Time-Information at Colliders

Dong Woo Kang (Yonsei U.)

In collaboration with Seong Chan Park and K. C. Kong, Christoper Rogan To appear soon

Contents

- Introduction
 - Hidden Sector
 - Long Lived Particles
- Timing detector
- Kinematic study with timing information
- Conclusion

Hidden Sector

Based on the null result at the LHC, we can guess the new physics particles are live in the hidden sector and they have small couplings with the SM.

Hidden Sector

- Hidden sector communicates with the SM sector through portal couplings
- The portal coupling makes hidden sector particles unstable and decay into SM with a relatively long life time
- Once Long Lived Particle (LLP) is produced at colliders and it decay back to the SM after flying some distance (displaced vertex!)

$$c\tau \approx \frac{1.2 \,\mathrm{fm}}{g^4} \left(\frac{M_{mediator}}{M_{LLP}}\right)^4 \left(\frac{1 \,\mathrm{TeV}}{M_{LLP}}\right)$$

LLP is well motivated

LLP searches at the LHC so far

CMS long-lived particle searches, lifetime exclusions at 95% CL

visible LLP (EM or QCD charge)

SM long-lived neutral hadrons

SM particles (EM charged)

non-reconstructed SM particles

displaced vertex

mis-reconstructed fake displaced vertex

[D. Curtin and R. Sundrum 1702.02524]

LLP Searches are Challenging

- The LHC is not designed for LLPs.
 - trigger selections are not optimized for the LLP searches
- Relatively small background but hard to estimate it.
- Neutral LLPs have no interaction with the detector
- If the decayed product contains invisible particles, It is hard to reconstruct the event.

Timing detector @ HL-LHC

- After run-2 both ATLAS and CMS have plan for detector upgrade for HL-LHC
 - ATLAS propose High-Granularity Timing Detector at the endcap region
 - CMS propose the minimum ionizing particles (MIPs) Timing Detector (MTD) between tracker and ECAL
- These effort will open up the "lifetime frontier"

The Problem: easy

- We want to solve "(a, b)" by "measuring" (c, d, e, f)
- If (c, d, e, f) are all visible, the problem is easy → just reconstruct everything!

The Problem: unsolved

- We want to solve "(a, b)" by "measuring" (c, d, e, f)
- If (c, e) only are all visible, the problem is unsolvable

of unknown > # of independent relations

The Problem: partly solvable

- We want to solve "(a, b)" by "measuring" (c, d, e, f)
- If (c, e) only are all visible, and the displaced vertices of (a, b) are measured
- Solvable (often) with multiple solutions only when a, b are same particle and d, f also are the same particle.

of unknown = # of independent relations

The Problem: completely solvable

- We want to solve "(a, b)" by "measuring" (c, d, e, f)
- If (c, e) only are all visible, and the displaced vertices of (a, b) are measured & timing information of (a, b) are measured
- Solvable!

of unknown = # of independent relations

LLP decay to visible particles

LLP decay semi-visibly

V : Visible SM particle

I: Invisible particle

- $ightharpoonup P_a$, P_b 4-momentum 4*2 d.o.f
- We can measure
 - $ightharpoonup \hat{r}_a$, \hat{r}_b 2*2 d.o.f
 - $ightharpoonup p_T^{miss}$ 2 d.o.f
- Futher assumptions
 - $\rightarrow M_a = M_b$
 - $\rightarrow M_{I_a} = M_{I_b}$

V : Visible SM particle

I: Invisible particle

[Giovanna Cottin 1801.09671]

$$(\boldsymbol{p}_{I_a})_{||P_a} = (\boldsymbol{p}_{I_a} \cdot \hat{r}_a)\hat{r}_a$$

$$(\boldsymbol{p}_{V_a})_{||P_a} = (\boldsymbol{p}_{V_a} \cdot \hat{r}_a)\hat{r}_a$$

$$(\boldsymbol{p}_{I_a})_{\perp P_a} = \boldsymbol{p}_{I_a} - (\boldsymbol{p}_{I_a} \cdot \hat{r}_a)\hat{r}_a$$

$$(\boldsymbol{p}_{V_a})_{\perp P_a} = \boldsymbol{p}_{V_a} - (\boldsymbol{p}_{V_a} \cdot \hat{r}_a)\hat{r}_a$$

$$(\boldsymbol{p}_{I_a})_{\perp P_a} = -(\boldsymbol{p}_{V_a})_{\perp P_a}$$

$$\boldsymbol{p}_{I_a} = (A+B)\hat{r}_a - \boldsymbol{p}_{V_a}$$

$$A \equiv (\boldsymbol{p}_{I_a} \cdot \hat{r}_a)$$

$$B \equiv (\boldsymbol{p}_{V_a} \cdot \hat{r}_a)$$

 $P: \mathsf{LLP}$

V: Visible SM particle

I: Invisible particle

$$A \equiv (\boldsymbol{p}_{I_a} \cdot \hat{r}_a)$$

$$B \equiv (\boldsymbol{p}_{V_a} \cdot \hat{r}_a)$$

$$C \equiv (\boldsymbol{p}_{I_b} \cdot \hat{r}_a)$$

$$D \equiv (\boldsymbol{p}_{V_b} \cdot \hat{r}_a)$$

$$\hat{k}$$
 P_h

$$\boldsymbol{p}_{I_a} = (A+B)\hat{r}_a - \boldsymbol{p}_{V_a}$$

$$\boldsymbol{p}_{I_b} = (C+D)\hat{r}_b - \boldsymbol{p}_{V_b}$$

$$\hat{\boldsymbol{r}}_b \times \left(\boldsymbol{p}_T^{\text{miss}} = [(A+B)\hat{r}_a - \boldsymbol{p}_{V_a} + (C+D)\hat{r}_b - \boldsymbol{p}_{V_b}]_{\perp}\right) \cdot \hat{\boldsymbol{k}}$$

$$A = \frac{\hat{r}_b \times (\boldsymbol{p}_{V_a} + \boldsymbol{p}_{V_b} + \boldsymbol{p}_T^{\text{miss}}) \cdot \hat{k}}{\hat{r}_b \times \hat{r}_a \cdot \hat{k}} - B$$

$$m{p}_{I_a} = \left(rac{\hat{r}_b imes (m{p}_{V_a} + m{p}_{V_b} + m{p}_T^{ ext{miss}}) \cdot \hat{k}}{\hat{r}_b imes \hat{r}_a \cdot \hat{k}}
ight)\hat{r}_a - m{p}_{V_a}$$

 $P: \mathsf{LLP}$

V: Visible SM particle

I: Invisible particle

$$A \equiv (\boldsymbol{p}_{I_a} \cdot \hat{r}_a)$$

$$B \equiv (\boldsymbol{p}_{V_a} \cdot \hat{r}_a)$$

$$C \equiv (\boldsymbol{p}_{I_b} \cdot \hat{r}_a)$$

$$D \equiv (\boldsymbol{p}_{V_b} \cdot \hat{r}_a)$$

$$\boldsymbol{p}_{I_a} = (A+B)\hat{r}_a - \boldsymbol{p}_{V_a}$$

$$\boldsymbol{p}_{I_b} = (C+D)\hat{r}_b - \boldsymbol{p}_{V_b}$$

$$\hat{\boldsymbol{r}}_{a} \times \left(\boldsymbol{p}_{T}^{\text{miss}} = \left[(A+B)\hat{r}_{a} - \boldsymbol{p}_{V_{a}} + (C+D)\hat{r}_{b} - \boldsymbol{p}_{V_{b}} \right]_{\perp} \right) \cdot \hat{\boldsymbol{k}}$$

$$C = \frac{\hat{r}_a \times (\boldsymbol{p}_{V_a} + \boldsymbol{p}_{V_b} + \boldsymbol{p}_T^{\text{miss}}) \cdot \hat{k}}{\hat{r}_a \times \hat{r}_b \cdot \hat{k}} - D$$

$$m{p}_{I_b} = \left(rac{\hat{r}_a imes (m{p}_{V_a} + m{p}_{V_b} + m{p}_T^{ ext{miss}}) \cdot \hat{k}}{\hat{r}_a imes \hat{r}_b \cdot \hat{k}}
ight)\hat{r}_b - m{p}_{V_b}$$

 $P: \mathsf{LLP}$

V : Visible SM particle

I: Invisible particle

6 d.o.f become two 3-momenta

$$\boldsymbol{p}_{a} = \left(\frac{\hat{r}_{b} \times (\boldsymbol{p}_{V_{a}} + \boldsymbol{p}_{V_{b}} + \boldsymbol{p}_{T}^{\text{miss}}) \cdot \hat{k}}{\hat{r}_{b} \times \hat{r}_{a} \cdot \hat{k}}\right) \hat{r}_{a}$$

$$m{p}_b = \left(rac{\hat{r}_a imes (m{p}_{V_a} + m{p}_{V_b} + m{p}_T^{ ext{miss}}) \cdot \hat{k}}{\hat{r}_a imes \hat{r}_b \cdot \hat{k}}
ight)\hat{r}_b$$

3-momenta of invisible particles

$$m{p}_{I_b} = \left(rac{\hat{r}_a imes (m{p}_{V_a} + m{p}_{V_b} + m{p}_T^{ ext{miss}}) \cdot \hat{k}}{\hat{r}_a imes \hat{r}_b \cdot \hat{k}}
ight)\hat{r}_b - m{p}_{V_b}$$

$$m{p}_{I_a} = \left(rac{\hat{r}_b imes (m{p}_{V_a} + m{p}_{V_b} + m{p}_T^{ ext{miss}}) \cdot \hat{k}}{\hat{r}_b imes \hat{r}_a \cdot \hat{k}}
ight)\hat{r}_a - m{p}_{V_a}$$

V : Visible SM particle

I: Invisible particle

4-momentum conservation

$$\begin{array}{c} m_a^2 = m_{I_a}^2 + m_{V_a}^2 + 2E_{V_a}\sqrt{m_{I_a}^2 + |\boldsymbol{p}_{I_a}|^2} - 2\boldsymbol{p}_{V_a} \cdot \boldsymbol{p}_{I_a} \\ m_b^2 = m_{I_b}^2 + m_{V_b}^2 + 2E_{V_b}\sqrt{m_{I_b}^2 + |\boldsymbol{p}_{I_b}|^2} - 2\boldsymbol{p}_{V_b} \cdot \boldsymbol{p}_{I_b} \end{array}$$

$$m_b^2 + m_{I_b}^2 + m_{V_b}^2 + 2E_{V_b}\sqrt{m_{I_b}^2 + |\boldsymbol{p}_{I_b}|^2 - 2\boldsymbol{p}_{V_b} \cdot \boldsymbol{p}_{I_b}}$$

- We assume the missing transverse energy solely coms from invisible particles
- Let's assume that the mass of LLPs are same and also mass of invisible particle are same.
- We can find 1 or 2 positive mass pairs

 $P: \mathsf{LLP}$

V : Visible SM particle

I: Invisible particle

We can boost to LLP rest frame

$$E_a = \boldsymbol{p}_a/\boldsymbol{\beta}_a$$
 $\boldsymbol{p}_a = \left(\frac{\hat{r}_b \times (\boldsymbol{p}_{V_a} + \boldsymbol{p}_{V_b} + \boldsymbol{p}_T^{\mathrm{miss}}) \cdot \hat{k}}{\hat{r}_b \times \hat{r}_a \cdot \hat{k}}\right) \hat{r}_a$

- We can find 4-momentum of the LLPs without any presumable assumptions
- The solution is unique

 $P: \mathsf{LLP}$

V : Visible SM particle

I: Invisible particle

- If we can also measure the time-of-flight, we know the velocity β_a
- We can boost to LLP rest frame

$$I_a \longleftarrow V_a$$
 P_a

$$E_{a} = \mathbf{p}_{a}/\mathbf{\beta}_{a} \quad \mathbf{p}_{a} = \left(\frac{\mathbf{\beta}_{b} \times (\mathbf{p}_{V_{a}} + \mathbf{p}_{V_{b}} + \mathbf{p}_{T}^{\text{miss}}) \cdot \hat{k}}{\mathbf{\beta}_{b} \times \mathbf{\beta}_{a} \cdot \hat{k}}\right) \mathbf{\beta}_{a}$$

- We can find 4-momentum of the LLPs without any presumable assumptions
- The solution is unique

Summary of Event reconstruction

P: LLP

V: Visible SM particle

I: Invisible particle

		m_{LLP_1}	m_{LLP_2}	m_{I_1}	m_{I_2}	$oldsymbol{p}_{LLP_1}$	p_{LLP_2}	p_{I_1}	p_{I_2}
Case 1	no timing	\triangle	\triangle	\triangle	\triangle	\bigcirc	\bigcirc	\bigcirc	\circ
	timing	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Case2	no timing	×	×	×	×	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	timing	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- If the tracking system is perfect, we can find the position of the LLP decay
 - We can find the 3-momentums of the event
- If we also can measure the time-of-flight of the LLP
 - We can reconstruct the whole event.

Conclusion

- New physics may buried in the hidden sector
- The timing detectors will flash the hidden sector where we have overlooked before.
- Using the time-of-flight information, we can fully reconstruct the events
- Lifetime frontier is just started, we need to develop more concrete program

backup

 $P: \mathsf{LLP}$

V : Visible SM particle

I: Invisible particle

- Event generation is done by MadGraph5
- Displaced decay in PYTHIA8
- We set LLP mass 400 GeV and invisible particles mass is 100 GeV
- Timing resolution assumes 30 ps

MATHUSLA

MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles

Lian-Tao's paper

[J. Liu, Z. Liu and L. Wang 1805.05957]

Timing reconstruction (p Smeared)

