HEAVY ION PHYSICS WITH FLOW IN LARGE AND SMALL SYSTEMS

MÁTÉ CSANÁD, EÖTVÖS UNIVERSITY, BUDAPEST, HUNGARY

ICNFP 2019, AUGUST 21-29, CRETE, GREECE

PHoenix
CONTENT OF THIS TALK

• INTRODUCTION
 • The Big Bang and the Little Bangs in the lab
 • Experimental control parameters
 • RHIC and PHENIX

• BASIC OBSERVATIONS
 • Nuclear modification, flow, thermal photons, heavy flavor, HBT, fluctuations

• FLOW IN SMALL SYSTEMS
 • d+Au energy scan, p+Pb and p+p at the LHC
 • p/d/³He geometry scan
 • Smallest droplets of QGP
BIG BANG IN THE LAB

- Ages of the Universe:
 - Stars & Galaxies
 - Atoms
 - Nuclei
 - Nucleosynthesis
 - Elementary particles
 - …?

- How to investigate?
 - Create little bangs
 - Collisions of heavy ions
 - Record outcoming particles
TIMELINE OF A HEAVY ION COLLISION

- Pre-thermalization stage: ~1 fm/c
- Quark-hadron transition: ~7-10 fm/c
- Chemical + kinetic freeze-out
• Initial stage:
 • Hard scattering
 • Jet formation

• Leptons, photons:
 • ”shine through”

• Hadrons:
 • Dissociation and coalescence
 • ”Final” hadrons created at freeze-out

• How do we know if sQGP was there or not?
EXPERIMENTAL CONTROL PARAMETERS

• Collision energy: controls initial temperature, initial μ_B
• Collision system & centrality: controls available volume
• Event geometry: reaction plane, event plane, fluctuations
• Important parameters: N_{part} (system size), N_{coll} (x-sect)

Central Au+Au $N_{\text{part}} \sim 300$
Peripheral Au+Au $N_{\text{part}} \sim 50$
$\text{d}+\text{Au}$
$p+p$

Reaction Plane
FACILITIES: LARGE HADRON COLLIDER (+SPS)

- LHC collisions: p+p, p+Pb and Pb+Pb
- Energies: from 2.76 TeV/nucleon to 13 TeV (p+p only)
- Experiments: ALICE, ATLAS, CMS, LHCb, LHCf, MoEDAL, TOTEM
- Phase diagram related studies: SPS (NA61/SHINE, previously NA49)
THE RELATIVISTIC HEAVY ION COLLIDER

- At the Brookhaven National Laboratory, Long Island, New York, USA
- Collisions of: \(\bar{p}, d, ^3\text{He}, Al, Cu, Au, U \)
- Accelerator energies: 7.7-200 GeV/nucleon, even 0.5\,\text{TeV} for \(\bar{p} \)
- Experiments: STAR; future: sPHENIX; past: BRAHMS & PHOBOS & PHENIX
PHENIX AND sPHENIX

- PHENIX: versatile detector identifying many different particles, recording large amount of collisions. Dismantled in 2016, to give way to sPHENIX
- sPHENIX: to take data in ~2023
 - Jets, jet correlations, Upsilon states
 - EM+Hadronic calorimetry, high resolution tracking, fast (~100 kHz) data acquisition
THE RHIC BEAM ENERGY/SPECIES SCAN

- Collision experiments: acceptance independent of energy
- **BES-I**: 7.7-200 GeV; **BES-II**: 7.7-19.9 GeV, increased luminosity
- **Small system scan**: x+Au, 19.6-200 GeV
- **STAR fixed target mode**: down to 3 GeV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200.0</td>
<td>2000</td>
<td>7000</td>
<td>2010</td>
</tr>
<tr>
<td>62.4</td>
<td>67</td>
<td>830</td>
<td>2010</td>
</tr>
<tr>
<td>54.4</td>
<td>1300</td>
<td>-</td>
<td>2017</td>
</tr>
<tr>
<td>39.0</td>
<td>130</td>
<td>385</td>
<td>2010</td>
</tr>
<tr>
<td>27.0</td>
<td>70</td>
<td>220</td>
<td>2011</td>
</tr>
<tr>
<td>19.6</td>
<td>36</td>
<td>88</td>
<td>2011</td>
</tr>
<tr>
<td>14.5</td>
<td>20</td>
<td>247</td>
<td>2014</td>
</tr>
<tr>
<td>11.5</td>
<td>12</td>
<td>-</td>
<td>2010</td>
</tr>
<tr>
<td>7.7</td>
<td>4</td>
<td>1.4</td>
<td>2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>√s_{NN} [GeV]</th>
<th>PHENIX events [10^6]</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.0</td>
<td>2.2</td>
<td>p+Au</td>
</tr>
<tr>
<td>200.0</td>
<td>1600</td>
<td>^3He+Au</td>
</tr>
<tr>
<td>200.0</td>
<td>2057</td>
<td>d+Au</td>
</tr>
<tr>
<td>62.4</td>
<td>1655</td>
<td>d+Au</td>
</tr>
<tr>
<td>39.0</td>
<td>2000</td>
<td>d+Au</td>
</tr>
<tr>
<td>19.6</td>
<td>1040</td>
<td>d+Au</td>
</tr>
</tbody>
</table>
QGP SIGNATURES EXPECTATIONS, 1996

- Critical energy density: $\epsilon_c \approx 1 \text{ GeV/fm}^3$, temperature $T_c \approx 170 \text{ MeV}$
- Some observed, some not…

NUCLEAR MODIFICATION: TOMOGRAPHY!

Simply just more?
A+A = many p+p?

\[R_{AA} = \frac{\text{High } p_T \text{ particle yield in } A+A}{\text{High } p_T \text{ particle yield in } p+p \times \text{Number of } p+p \text{ collisions}} \]
SUPPRESSION AS A FUNCTION OF CENTRALITY

- No suppression in d+Au or peripheral Au+Au; strong suppression in central!

Graph: PHENIX

- π^0 0-5% Ce
- d+Au

Enhanced

Suppressed
SUPPRESSION OF THE AWAY SIDE JET

- Angular correlation of high energy hadrons
- Outgoing jet: similar in p+p, d+Au, Au+Au
- Inward going (away side) jet: missing in central Au+Au
HOW DO OTHER PARTICLES BEHAVE?

- All hadrons suppressed, direct photons „shine through”
- Suppression dependent of system size (controlled by centrality or N_{part})

PHENIX Au+Au $\sqrt{s_{NN}}=200$ GeV

Phys.Rev.Lett. 94 (2005) 232301

- **R_{AA}**
 - **$p_T > 6.0$ GeV/c**
 - **$N_{\text{participant}}$**

Data Sources:
- Direct γ (PRL109, 152302)
- J/ψ 0-20% cent. (PRL98, 232301)
- π^0 (PRL101, 232301)
- ω 0-20% cent. (PRC84, 044902)
- η (PRC82, 011902)
- $e^{+}\pi^{-}$ (PRC84, 044902)
- \bar{p} (PRC83, 064903)
- p (PRC83, 064903)
Spatial anisotropy creates momentum-space anisotropy!

Quantified via anisotropy parameters

\[
f(\phi) = 1 + 2 \sum_{n} v_n \cos n\phi
\]
ELLIP Tic FLOW SCALING

- Hydro predicts scaling (v_2 versus $w \sim E_K/T_{eff}$)

- Coalescence predicts quark number scaling

 $E_{K{hadron}} = n_q E_{K{quark}}$

 $v_n^{hadron}(E_{K{hadron}}) \cong n_q v_n^{quark}(E_{K{quark}})$

- Flow develops in pre-hadronic stage!

References

- Csanád, Csörgő, Lörstad, Ster et al. (EPJA38:363-368,2008)

Graphs

THERMAL PHOTONS

- Soft component in direct photon spectrum compared to p+p extrapolation
- These are thermal photons!
- Large initial temperature, 3-600 MeV!
ELLIPTIC FLOW IN D+AU AT RHIC

- Deuteron-gold energy scan (19.6-200 GeV), PHENIX, PRC96, 064905 (2017)
- superSONIC in good agreement at 62.4 GeV and 200 GeV
- Underpredicts data at 19.6 GeV and 39 GeV
- Data still contains nonflow effects: AMPT(EventPlane) w/ nonflow matches
ELLIPTIC FLOW IN P+PB AT THE LHC

- Identified particle elliptic flow, ALICE pPb @ 5.02 TeV, from pions to Λ’s
- Quark number scaling works well; LHC pPb not so small system though…

V. Pacik (ALICE), Quark Matter 2018

p-Pb $\sqrt{s_{NN}} = 5.02$ TeV
$|\eta| < 0.8$

0.25
0.2
0.15
0.1
0.05
0.02
0

0
1
2
3
4
5
6
7

p_T (GeV/c)

0
0.5
1
1.5
2
2.5
3
3.5

$(m_T - m_0) / n_q$ (GeV/c)
FLOW IN 13 TEV P+P AT CMS

- No mass ordering in low multiplicity p+p (v_2 due to jets)
- Mass ordering, quark number scaling in high multiplicity pp

- Note: initial energy density may reach 1 GeV/fm3 already around $N_{ch}=10$

Csanád et al., Universe 3 (2017) no.1, 9
ORIGIN OF FINAL STATE COLLECTIVITY?

- Is it due to the appearance of the sQGP (i.e. a strongly coupled fluid)?
 - If yes, how much time is needed to spend in QGP phase?
 - Test: d+Au collisions from 20 to 200 GeV
- Is it due to initial geometry and hydro?
 - Hydrodynamics: initial spatial correlations
 - Alternative: initial momentum correlations
 - Test: p+Au, d+Au, \(^3\)He+Au
 - How do \(v_2\) and \(v_3\) evolve with initial state geom.?
INITIAL STATE AND HYDRO EVOLUTION

• Evolution from SONIC

• Initial stage:

\[
\epsilon_2^{p+Au} < \epsilon_2^{d+Au} \approx \epsilon_2^{^3He+Au} \\
\epsilon_3^{p+Au} \approx \epsilon_3^{d+Au} < \epsilon_3^{^3He+Au}
\]

\[\langle \epsilon_2 \rangle \quad \langle \epsilon_3 \rangle\]
Flow ordered similarly as initial state:

\[v_2^{p+Au} < v_2^{d+Au} \approx v_2^{3\text{He}+Au} \]

\[v_3^{p+Au} \approx v_3^{d+Au} < v_3^{3\text{He}+Au} \]
COMPARISON TO HYDRO CALCULATIONS

- Hydro calculations
- Both 2+1D, $\eta/s = 0.08$, MCGlauber initial cond.
- Different hadronic rescattering

\[v_2 \text{ Data} \]
\[v_3 \text{ Data} \]
\[v_n \text{ SONIC} \quad \text{(Eur. Phys. J. C 75, 15 (2015))} \]
\[v_n \text{ iEBE-VISHNU} \quad \text{PRC 95, 014906 (2017)} \]
IS THERE AN ALTERNATIVE EXPLANATION?

- Hydro: initial state spatial correlations a.k.a. geometry

- Alternative: initial state momentum correlations
ALTERNATIVE MODEL VS DATA

- MVST postdiction (Mace, Skokov, Tribedy, Venugopalan, PRL121, 052301)
- Before erratum: reasonable v_2 description, misses v_3 ordering
ALL MODELS VS DATA

- Hydro description much better already ,,by eye”
- Tools for discrimination: confidence level
- MVST: multiplicity dependence; test v_2 at same $dN/d\eta$

$\sqrt{s_{NN}} = 200$ GeV 0-5%

PHENIX

ν_2 Data
ν_3 Data
ν_n SONIC
ν_n iEBE-VISHNU
ν_2 MSTV
ν_3 MSTV

arXiv:1805.02973
SUMMARY

• Clear consensus on a list of QGP signs found in nucleus-nucleus collisions
 • Suppression, flow, thermal photons

• Strong evidence for QGP droplets in small systems
 • Quark number scaling works in p+Pb, mass ordering already in pp
 • Hydro works well in p/d/³He+Au

M. Csanád (Eötvös U) @ ICNFP 2019
THANK YOU FOR YOUR ATTENTION

If you are interested in these subjects, come to our Zimányi School 2019
December 2-6., Budapest, Hungary

http://zimanyischool.kfki.hu/19
31

BACKUP SLIDES
HOW TO INVESTIGATE THESE LITTLE BANGS?
COLLISIONS OF DIFFERENT CENTRALITY

Peripheral --> Central
FACILITIES: LARGE HADRON COLLIDER (+SPS)

- LHC collisions: p+p, p+Pb and Pb+Pb
- Energies: from 2.76 TeV/nucleon to 13 TeV (p+p only)
- Experiments: ALICE, ATLAS, CMS, LHCb, LHCf, MoEDAL, TOTEM
- Phase diagram related studies: SPS (NA61/SHINE, previously NA49)
EXPLORING THE PHASE MAP OF QCD

• Phase map: temperature versus matter excess (baryochem. pot. μ_B)

• Control parameters:
 • Collision energy, system
 • Collision geometry

• Crossover at low μ_B and $T \approx 170$ MeV

• Probably 1st order quark-hadron p.t. at high μ_B (NJL, bag model, etc)

• Critical End Point (CEP) in between?

• High μ_B: nuclear matter, neutron stars, color superconductors…

• Phase transition importance: even in core-collapse supernovae!
• With Blast-Wave fits
• Predictions for not fitted particles agree well
• Flow in all systems!

STAR Collaboration, PRC93, 014907 (2016)
SUPPRESSION IN THE BEAM ENERGY SCAN

- \(R_{CP} \) analyzed here instead of \(R_{AA} \), transition to above one with coll. energy
- Hadron enhancement: Cronin-effect, radial flow, coalescence domination
- Competing effects, HIJING reproduces enhancement w/o jet quenching
- Identified particles: less suppression for kaons, enhancement for protons

SEARCH FOR THE CRITICAL POINT POSSIBLE?

- Effects of the CEP in a broad region (via an effective potential $\sim N_f=2$ QCD)

- Hydro evolution attracted to the critical point
STAR: UPGRADES AND FIXED TARGET PROGRAM

- Large acceptance, great PID capabilities: great for identified hadrons
- Upgrades for BES-II
 - innerTPC: better dE/dx (PID) and momentum resolution, by 2019
 - Event Plane Detector: replace BBC, better triggering & EP resolution, by 2018
 - Endcap TOF: extended fwd PID, by 2019
- Fixed target program: 1 cm wide, 1mm thick target at 2.1 m
- At the lowest energies: out to $\mu_B > 700$ MeV
• Reach down to 3 GeV in center of mass energy!

<table>
<thead>
<tr>
<th>Collider Energy</th>
<th>Fixed Target Coll. Energy</th>
<th>Single Beam C.M. Energy</th>
<th>Rapidity</th>
<th>μ_B(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.4</td>
<td>7.7</td>
<td>30.3</td>
<td>2.10</td>
<td>420</td>
</tr>
<tr>
<td>39.0</td>
<td>6.2</td>
<td>18.6</td>
<td>1.87</td>
<td>487</td>
</tr>
<tr>
<td>27.0</td>
<td>5.2</td>
<td>12.6</td>
<td>1.68</td>
<td>541</td>
</tr>
<tr>
<td>19.6</td>
<td>4.5</td>
<td>8.9</td>
<td>1.52</td>
<td>589</td>
</tr>
<tr>
<td>14.5</td>
<td>3.9</td>
<td>6.3</td>
<td>1.37</td>
<td>633</td>
</tr>
<tr>
<td>11.5</td>
<td>3.5</td>
<td>4.8</td>
<td>1.25</td>
<td>666</td>
</tr>
<tr>
<td>9.1</td>
<td>3.2</td>
<td>3.6</td>
<td>1.13</td>
<td>699</td>
</tr>
<tr>
<td>7.7</td>
<td>3.0</td>
<td>2.9</td>
<td>1.05</td>
<td>721</td>
</tr>
</tbody>
</table>

Energies unreachable in collider mode
FUTURE FACILITIES: NICA, FAIR, J-PARC HI

- New facilities planned/built
- NICA: 2020, MPD&BM@N
- FAIR: 2022, CBM
- J-PARC HI: 2025, JHITS
(FUTURE) FACILITIES COMPARISON

- Many future facilities and experiments, SPS and RHIC already running
- RHIC, NICA: Collider and fixed target
- SPS, FAIR, J-PARC: fixed target
- Energy ranges from 2 to 20 GeV in $\sqrt{s_{NN}}$

Compilation from Daniel Cebra and Olga Evkidomiv:

<table>
<thead>
<tr>
<th>Facility</th>
<th>RHIC BES-II & Fixed Target</th>
<th>SPS</th>
<th>NICA</th>
<th>FAIR</th>
<th>J-PARC HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>STAR</td>
<td>NA61</td>
<td>MPD & BM@N</td>
<td>CBM</td>
<td>JHITS</td>
</tr>
<tr>
<td>Start</td>
<td>2019</td>
<td>2009</td>
<td>2020-23</td>
<td>2025</td>
<td>2025</td>
</tr>
<tr>
<td>Energy ($\sqrt{s_{NN}}$, GeV)</td>
<td>2.9-19.6 GeV</td>
<td>4.9-17.3</td>
<td>2.0-11</td>
<td>2.7-8.2</td>
<td>2.0-6.2</td>
</tr>
<tr>
<td>Rate</td>
<td>100-1000 Hz</td>
<td>100 Hz</td>
<td>10 kHz</td>
<td>10 MHz</td>
<td>10-100 MHz</td>
</tr>
</tbody>
</table>
HEAVY FLAVOR SUPPRESSION & REGENERATION

- Timeline: quarkonium ($q\bar{q}$) formation \rightarrow QGP evolution \rightarrow $q\bar{q}$ decay
- Quarkonia experience the whole QGP evolution, competing processes
- Suppression due to color-screening: temperature and size/mass dependence

- Statistical regeneration in time:

Images from J Castillo, SQM17 and A Mócsy, HardProbes2009
CONTROL EXPERIMENT: D+AU COLLISIONS

- Suppression in Au+Au collisions: 1st milestone
- Lack of suppression in d+Au: 2nd milestone
- Two PRL covers

Zajc, Riordan, Scientific American
RHIC recorded runs and luminosity

RHIC energies, species combinations and luminosities (Run-1 to 17)

Center-of-mass energy $\sqrt{s_{NN}}$ [GeV] (scale not linear)

Species combination:
- $p^+ + p^+$
- $p^+ + Al$
- $p^+ + Au$
- $d + Au$
- $h + Au$
- $Cu + Cu$
- $Cu + Au$
- $Au + Au$
- $U + U$

Average store luminosity $L/N [10^{30} cm^{-2} s^{-1}]$
FREEZE-OUT FROM PARTICLE YIELDS

- Chemical and kinetic freeze-out parameters via THERMUS and BlastWave
- Thermal multiplicity assumption valid
- Systematics investigated (parameter constraints, included species)
- Separation of T_{ch} and T_{kin} around $\sqrt{s_{NN}} = 4-5$ GeV, T_{ch} flattens at ~ 10 GeV

\[\sqrt{s_{NN}} = 4-5 \text{ GeV}, T_{\text{ch}} \text{ flattens at } \sim 10 \text{ GeV} \]

EVEN HEAVY FLAVOR FLOWS!

- Electrons from heavy flavor measured
- Even heavy flavor is suppressed
- Even heavy flavor flows
- Strong coupling of charm & bottom to the medium
- Small charm & bottom relaxation time in medium and small viscosity
VISCOSITY

- Viscosity/entropy density: proportional to mean free path
- Strong coupling: small η/s
- $\text{AdS}_{D+1}/\text{CFT}_D$ lower bound: $\frac{\eta}{s} \geq \frac{\hbar}{4\pi}$
- Measurement and calculation results:
 - A. Adare et al. (PHENIX), PRL98:172301, 2007
J/ψ IN THE BEAM ENERGY SCAN

- Regeneration from c\bar{c} and feed-down from \chi_c and \psi', increases with \sqrt{S_{NN}}

- Screening and cold nucl. matt.: less primordial charmonium with increasing \sqrt{S_{NN}}

- Two effects seem to compensate for \sqrt{S_{NN}} < 200 GeV

QUARK PARTICIPANT SCALING

- Transverse energy and particle number: not constant vs Npart!
- Number of quark participants: a better estimator, quark degrees of freedom?

![Graphs showing transverse energy and particle number scaling vs Nqp for different collision energies.](image)
STATISTICAL TEST OF ALL MODELS

- QGP droplet and hydro describes data the best; MSVT close to marginal

<table>
<thead>
<tr>
<th>Model</th>
<th>p+Au</th>
<th>d+Au</th>
<th>3He+Au</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>p+Au</td>
<td>0.966</td>
<td>0.689</td>
<td>0.465</td>
<td>0.896</td>
</tr>
<tr>
<td>d+Au</td>
<td>0.086</td>
<td>0.313</td>
<td>0.432</td>
<td>0.139</td>
</tr>
<tr>
<td>3He+Au</td>
<td>0.011</td>
<td>0.007</td>
<td>9.8x10^{-17}</td>
<td>2.09x10^{-7}</td>
</tr>
<tr>
<td>Combined</td>
<td>7.07x10^{-17}</td>
<td>1.58x10^{-18}</td>
<td>2.17x10^{-22}</td>
<td>2.67x10^{-43}</td>
</tr>
</tbody>
</table>
MVST PREDICTION FOR FIXED MULTIPLICITY

• Compare similar collision systems
 • d+Au 20-40% ($dN/d\eta = 12.2 \pm 0.9$)
 PRC 96, 064905 (2017)
 • p+Au 0-5% ($dN/d\eta = 12.3 \pm 1.7$)
 PRC 95, 034910 (2017)

• Fixed multiplicity:
 same MVST prediction for v_2

• Hydro description:
 better qualitative agreement
 (same multiplicity scales with eccentricity)

• Note: no nonflow systematics
 estimate in d+Au (\leq than in p+Au)
FROM PP THROUGH PPB TO PbPb

- ALICE, arXiv:1903.01790
- A given hydro does not describe pp very well, still better than Pythia
DIRECT PHOTONS

- Clear direct γ signal at lower energies
- Yield scaling from RHIC to LHC, transition from $p+p$, to $A+A$: $p+Au$, $d+Au$
- Effective photon temperature similar from 39 to 2760 GeV
- Note overlapping mechanisms: hadron gas, sQGP, jets, bremsstrahlung, hard scatt.
SUPPRESSION IN HIGHLY ASYMMETRIC SYSTEMS

- p+Au, d+Au, \(^3\)He+Au compared
- Centralities determined as for large systems
- New p+Au results show large centrality dependence
- System sizes agree at high \(p_T\)
- At moderate \(p_T\), ordering seen
- Model comparison:
 - Vitev, HIJING++ investigated
 - No full match of ordering, peak location, etc