Main results of the DAMPE space detector in its 4th year in orbit

Piergiorgio Fusco
University and INFN Bari - Italy
on behalf of the DAMPE Collaboration
A few open questions in astroparticle physics

Dark Matter
nature, origin, abundance, properties

Cosmic rays
sources, acceleration, propagation

High-energy cosmic photons
sources, interaction, non-thermal physics

Exotic particles

E.M. with GW

P. Fusco – Main results of the DAMPE space detector – ICNFP 2019 – August 22, 2019
The DAMPE Collaboration

CHINA
- Purple Mountain Observatory, CAS, Nanjing, *Prof. Jin Chang*
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

ITALY
- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- GSSI Gran Sasso Science Institute and INFN LNGS

SWITZERLAND
- University of Geneva
DAMPE – DArk Matter Particle Explorer – is a **space particle and photon detector** aimed to:

- study **cosmic electrons** spectra
- study **cosmic protons + nuclei** spectra and composition
- astronomy with high-energy cosmic **gamma-rays**
- search for **dark matter** signatures in **photon** and **lepton** spectra
- search for **e.m. counterparts** of gravitational waves or neutrinos
- quest for **exotic** particles and phenomena

Excellent performance:

- detection of 5 GeV – 10 TeV e/γ, 50 GeV – 100 TeV p and nuclei
- energy resolution: < 1.5% for 100 GeV e/γ, < 40% for 800 GeV p
- angular resolution: < 0.2° for 100 GeV γ
- field of view: ~1 sr
- effective area (normal incidence): 1200 cm² @ 100 GeV
The DAMPE instrument

PSD: Plastic Scintillator Detector
- Anti-coincidence, ion identification

STK: Silicon Trakker/converter
- (6 Si double layers + 3 W plates 1 mm)
- Photon conversion, particle tracking

CALO: Calorimeter
- (14x22 hodoscopic BGO bars, 32 r.l.)
- Energy deposition and profile, trigger

NUD: Neutron detector
- (4 B-doped plastic scintillators)
- Neutron showers measurement

[Astropart. Phys. 95, 6 (2017)]
The DAMPE sub-detectors

PSD: IMP

STK: IHEP, UG, INFN Perugia

BGO: USTC & PMO

NUD: PMO
Beam tests at CERN

- **14 days @ PS, 29/10-11/11 2014**
 - e @ 0.5, 1, 2, 3, 4, 5 GeV/c
 - p @ 3.5, 4, 5, 6, 8, 10 GeV/c
 - π^- @ 3, 10 GeV/c
 - γ @ 0.5-3 GeV/c

- **8 days @ SPS, 12/11-19/11 2014**
 - e @ 5, 10, 20, 50, 100, 200, 250 GeV/c
 - p @ 400 GeV/c (SPS primary beam)
 - γ @ 3-20 GeV/c
 - μ @ 150 GeV/c

- **17 days @ SPS, 16/03-10/04 2015**
 - Fragments @ 66.67, 88.89, 166.67 GeV/c
 - Argon @ 30A, 40A, 75A GeV/c
 - p @ 30, 40 GeV/c

- **21 days @ SPS, 10/06-01/07 2015**
 - p @ 400 GeV/c (SPS primary beam)
 - e @ 20, 100, 150 GeV/c
 - γ @ 50, 75, 150 GeV/c
 - μ @ 150 GeV/c
 - π^+ @ 10, 20, 50, 100 GeV/c

- **6 days @ SPS, 20/11-25/11 2015**
 - Pb @ 30A GeV/c (and fragments)
DAMPE, AMS-02, Fermi LAT comparison

<table>
<thead>
<tr>
<th>Performance</th>
<th>DAMPE</th>
<th>AMS-02</th>
<th>Fermi LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e/\gamma) Energy resol. @100 GeV (%)</td>
<td><1.5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>(e/\gamma) Angular resol. @100 GeV (deg.)</td>
<td><0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>(e/p) discrimination</td>
<td>(>10^5)</td>
<td>(10^5 - 10^6)</td>
<td>(10^3)</td>
</tr>
<tr>
<td>Calorimeter thickness ((X_0))</td>
<td>32</td>
<td>17</td>
<td>8.6</td>
</tr>
<tr>
<td>Geometrical acceptance (m(^2)sr)</td>
<td>0.3</td>
<td>0.09</td>
<td>1</td>
</tr>
</tbody>
</table>

DAMPE facts

- **Mass:** 1400 kg
- **Power consumption:** 400 W
- **Readout channels:** > 75k
- **Data transfer:** 16 Gbyte/day
- **Lifetime:** 5 years
The launch

- DAMPE was launched on Dec. 17, 2015
- Launch site: Jiuquan Satellite Launch Center, Gobi desert, China
- Orbit: 500 km altitude, 97° inclination, Sun-synchronous
Trigger rate and data transfer

Total trigger rate

- Acquisition rate up to 200 Hz
- High Energy (physics) trigger rate up to 50 Hz
- Raw data plus control data download 15 GB/day
- Reconstructed data in ROOT format 85 GB/day
- Total data per year 35 TB
- Total events at 01/08/2019 6.5 billion

3.5 years exposure map

- Data excluded when in SAA
- Different prescale factor for lower latitudes
- SAA

MIP Calibration

- +20°
- -20°

Total trigger rate map

- 20 Hz to 200 Hz
- 100k to 250k
Detector stability

- PSD, STK, BGO and NUD pedestal fluctuation from 01/07/16 to 02/07/19

- PSD pedestal < 0.5%
- STK pedestal < 0.7%
- BGO pedestal < 0.9%
- NUD pedestal < 0.6%
Energy calibration

- First level calibration at each orbit with MIPs
- Absolute calibration with the geomagnetic rigidity cut-off of Cosmic Ray Electrons (CREs)
 - cosmic ray electrons flux is measured in the low energy range 8 GeV – 100 GeV
 - flight and Monte Carlo data (with back-tracing in Earth magnetic field model IGRF12) are compared
 - expected cut-off: 13.0 GeV; DAMPE measured cut-off 13.2 GeV

P. Fusco – Main results of the DAMPE space detector – ICNFP 2019 – August 22, 2019
Detection and identification challenges

- **1) Particle identification**
 - electrons/protons: 10^{-3}, photons/protons: 10^{-5} → high rejection capability

- **2) Dynamic range**
 - e/γ energy: 1 GeV – 10 TeV → BGO bar range 2 MeV – 4 TeV

- **3) Energy resolution**
 - sensitivity to DM line → 1.5% res. for e & γ

Beam test with 32 X_0 calorimeter
Several different PID methods used:

- Shape parameters
- Boosted Decision Trees
- Random Forest + Convolutional Neural Network
a cosmic electron candidate (~5 TeV)
Electron/proton separation

- The "ζ shower parameter" was computed from the lateral shower development in BGO and the energy deposition in the last layer
 - the cut ζ > 8.5 was adopted to discriminate e− (and e+) from p
 - for 90% e± efficiency, p background ~2% @ 1 TeV, ~5% @ 2 TeV, ~10% @ 5 TeV

![Graph showing electron/proton separation](image)
The ζ parameter was validated with beam tests and with photons.

- different PID methods give consistent results.
The e^+e^- spectrum

- Cosmic-rays electrons and positrons from 20 GeV to \sim5 TeV
 - spectral hardening at 50 GeV
 - direct detection of a spectral break at 0.9 TeV (6.6 σ c.l.)
 - a smoothly broken power law fits data ($\gamma = 3.1 \rightarrow 3.9$)
 - next: search for structures and anisotropies (nearby sources, pulsars, DM?)

\[\gamma_1 = 3.09 \pm 0.01 \]
\[\gamma_2 = 3.92 \pm 0.20 \]
\[E_b = 914 \pm 98 \text{ GeV} \]
\[\Phi_0 = (1.64 \pm 0.01) \times 10^{-4} \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{GeV}^{-1} \]
\[\Delta = 0.1 \]
\[\chi^2/\text{NdF} = 23.3/18 \text{ (6.6σ pref. over PL)} \]

530 days of data
2.8 billion events
1.5 million e^+-e^- (>25 GeV)

[Nature 552, 63 (2017)]

(+ CALET)
Study of cosmic nuclei charge: beam tests

- Identifying protons and nuclei with PSD and STK
 - charge measurement tested with ion beam tests at CERN SPS
 - PSD: up to Argon; STK: up to Oxygen
 - charge resolution depends on Z: from 0.06 for protons to 0.30 for Iron nuclei
 - more details in Astropart. Phys. 95, 6 (2017)

PSD – Argon beam 40 GeV/n

STK – Lead beam 40 GeV/n
Identifying protons and nuclei in space with PSD and STK

- charge resolution: 0.1e for protons, 0.2e for CNO, 0.3e for Fe
Study of cosmic protons: selection

- Protons selection
 - energy > 20 GeV in BGO + high energy trigger + STK, PSD, BGO track selection
 - Helium cut applied on PSD charge
 - Helium contamination <1% up to 10 TeV, 5% around 50 TeV
 - electron contamination very small thanks to high e/p discrimination of DAMPE
 - proton acceptance rises over 0.04 m²sr

p in PSD and He cut

He and e± contamination

Acceptance for protons

P. Fusco – Main results of the DAMPE space detector – ICNFP 2019 – August 22, 2019
Cosmic protons: results

- Protons flux
 - from 40 GeV to 100 TeV
 - 30 months of data (01/01/2016 – 30/06/2018)
 - 4.68 billion events
 - spectral hardening at \(\sim 400 \) GeV
 - softening at \(\sim 10 \) TeV
 - fitting with a smoothly broken power-law:
 \(\gamma = 2.60 \rightarrow 2.85 \) at 13.6 TeV

[C. Yue, ICRC 2019]
Study of Helium nuclei: selection

- **Helium nuclei selection**
 - energy > 20 GeV in BGO + high energy trigger + STK, PSD, BGO track conditions
 - charge measurement agreement in both PSD views and in STK 1st layer
 - protons cut based on MC
 - proton contamination <1% up to 1 TeV, 3% around 7 TeV
 - He nuclei acceptance rises over 0.035 m²sr
Helium nuclei: results

- **Helium flux**
 - from 10 GeV/n to ~5 TeV/n
 - 39 months of data (01/01/2016 – 31/03/2019)
 - spectral hardening at ~400 GeV/n
 - analysis ongoing at higher energies
PSD selection with high purity (background < 0.1%): crosscheck with H and He spectra, link with CRs up to 100 TeV, useful in indirect studies

Protons + Helium nuclei selection

- energy > 20 GeV in BGO + energy conditions + STK, PSD, BGO track conditions
- energy measured in both PSD views and proportional to Z^2
- $p+He$ acceptance $\sim 0.05 \text{ m}^2\text{sr}$ at 10^4 GeV

Preliminary

- $p+He$ in PSD (BGO 400-630 GeV)
- PSD range vs BGO energy
- Acceptance $p + He$ nuclei
Protons + Helium nuclei: results

- p+He flux
 - from 50 GeV to ~7 TeV
 - 39 months of data (01/01/2016 – 31/03/2019)
 - 38 million events
 - spectral hardening below ~1 TeV/n
 - analysis ongoing up to 100 TeV, new results expected

DAMPE total syst.

Preliminary [Z.M. Wang, ICRC 2019]
Charged particles are a massive background for photons

Protons vs γ:
- 10^5 factor @ $E > 100$ GeV
- mainly rejected using the shower profile and the onboard trigger

Electrons vs γ:
- 10^3 factor @ $E > 100$ GeV
- mainly rejected using the PSD and the 1st layer of STK
- key problem is the back scattering at high energy
Photons: selection

- Event topology
- Random Forest Classifiers + Convolutional Neural Networks

Proton

Y [No. 32: 49.132GeV]

PSD + BGO profile + NUD: rejection up to 10^3 for electrons

Electron

Y [No. 40: 5.034GeV]

PSD + STK: rejection up to 10^7 for hadrons

Photon

Y [No. 61: 5.559GeV]

PSD + BGO profile + NUD: rejection > 10^7 for hadrons
After application of selection criteria to reject protons and electrons

- Convolutional Neural Networks + Random Forest Classifiers
- Other PID algorithms to decrease the contamination from electrons below the Extra Galactic Background emission
The DAMPE gamma-ray sky

~150 photons/day
$E > 1 \text{ GeV}$

Angular resolution: $\sim 1^\circ$ @ 1 GeV, $\sim 0.1^\circ$ @ 100 GeV, $\sim 0.05^\circ$ @ 1 TeV
Photons: bright sources

- Algorithms to resolve gamma-rays from charged cosmic rays

 [Res. Astron. Astrophys 18, 3, 27 (2018)]

- Pulsar phase profiles

 - Geminga (T~237 ms)
 - Vela X (T~89 ms)
 - PSR J0007+7303 (T~316 ms)
Photons: pulsars

- Selection, count maps, phase maps, SEDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>RA</th>
<th>DEC</th>
<th>PERIOD [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0614-3329</td>
<td>93.543</td>
<td>-33.498</td>
<td>3.149</td>
</tr>
<tr>
<td>J1514-4946</td>
<td>228.58</td>
<td>-49.771</td>
<td>3.589</td>
</tr>
<tr>
<td>J1231-1411</td>
<td>187.797</td>
<td>-14.195</td>
<td>3.684</td>
</tr>
<tr>
<td>J0534+2200</td>
<td>83.633</td>
<td>22.014</td>
<td>33.651</td>
</tr>
<tr>
<td>J1420-6048</td>
<td>215.034</td>
<td>-60.805</td>
<td>67.47</td>
</tr>
<tr>
<td>J1509-5850</td>
<td>227.363</td>
<td>-58.849</td>
<td>88.925</td>
</tr>
<tr>
<td>J0835-4510</td>
<td>128.836</td>
<td>-45.176</td>
<td>89.371</td>
</tr>
<tr>
<td>J1028-5819</td>
<td>157.116</td>
<td>-58.318</td>
<td>91.404</td>
</tr>
<tr>
<td>J1709-4429</td>
<td>257.428</td>
<td>-44.486</td>
<td>102.504</td>
</tr>
<tr>
<td>J1459-6053</td>
<td>224.876</td>
<td>-60.889</td>
<td>103.152</td>
</tr>
<tr>
<td>J0908-4913</td>
<td>137.148</td>
<td>-49.218</td>
<td>106.694</td>
</tr>
<tr>
<td>J1016-5657</td>
<td>154.088</td>
<td>-58.953</td>
<td>107.405</td>
</tr>
<tr>
<td>J1413-6205</td>
<td>213.376</td>
<td>-62.094</td>
<td>109.743</td>
</tr>
<tr>
<td>J1418-6058</td>
<td>214.678</td>
<td>-60.967</td>
<td>110.583</td>
</tr>
<tr>
<td>J1429-5911</td>
<td>217.494</td>
<td>-59.193</td>
<td>115.844</td>
</tr>
<tr>
<td>J1048-5832</td>
<td>162.053</td>
<td>-58.534</td>
<td>123.09</td>
</tr>
<tr>
<td>J1044-5737</td>
<td>161.137</td>
<td>-57.622</td>
<td>139.032</td>
</tr>
<tr>
<td>J1620-4927</td>
<td>245.173</td>
<td>-49.46</td>
<td>171.935</td>
</tr>
<tr>
<td>J1836+5925</td>
<td>279.057</td>
<td>59.425</td>
<td>173.264</td>
</tr>
<tr>
<td>J1057-5226</td>
<td>164.496</td>
<td>-52.449</td>
<td>197.114</td>
</tr>
<tr>
<td>J0633+1746</td>
<td>98.476</td>
<td>17.77</td>
<td>237.104</td>
</tr>
<tr>
<td>J2021+4026</td>
<td>305.378</td>
<td>40.446</td>
<td>265.321</td>
</tr>
<tr>
<td>J0007+7303</td>
<td>1.756</td>
<td>73.052</td>
<td>315.892</td>
</tr>
</tbody>
</table>

by Maria Munoz Salinas (preliminary)
Gamma-ray sources: counts maps and SEDs

Vela

Geminga

Crab

preliminary

preliminary

preliminary

by Maria Munoz Salinas (preliminary)
DAMPE detection of gamma-ray variable emission in extragalactic sources:

- blazar CTA 102; Atel #9901
- blazar 3C 454.3
- blazar 3C 279; Atel #11246
- FSRQ S4 1800+44; Atel #12562
- FRSQ PKS 1830-211; Atel #12705
- ...

Emission variation in extragalactic sources

DAMPE detection of variable GeV gamma-ray emission from blazar CTA 102

ATel #9901: Zun-Lei Xu (PMO), Micaela Caragiulo (Bari), Jin Chang (PMO), Kai-Kai Duan (PMO), Yi-Zhong Fan (PMO), Fabio Gargano (Bari), Shi-Jun Lei (PMO), Xiang Li (PMO), Yun-Feng Liang (PMO), M. Nicola Mazzotta (Bari), Zhao-Qiang Shen (PMO), Meng Su (HKU/PMO), Andriy Tykhonov (Geneva), Qiang Yuan (PMO), Stephan Zimmer (Geneva), on behalf of the DAMPE collaboration, and Bin Li (PMO) and Hai-Bin Zhao (PMO) on behalf of the CNEOST group.

on 27 Dec 2016; 01:02 UT

Credential Certification: Zun-Lei Xu (xuzl@pmo.ac.cn)
Participation to multi-messenger searches

- Detection of gamma-ray source TXS 0506+056
 - 5.7 Gly, associated with the 290 TeV ν_μ IceCube-170922A
 - no clear variability detected due to limited statistics
 - ongoing monitoring of the source
DAMPE summary

- DAMPE is working extremely well since ~4 years
- e^-e^+ spectrum precisely measured up to TeV energies
 - a clear spectral break has been directly measured at ~1 TeV
 - improving precision on behavior and structures (nearby sources, anisotropies, DM?)
- Proton spectrum measured
 - hardening at ~400 GeV, softening at ~10 TeV
- Helium spectrum measured
 - hardening at ~400 GeV/n
- Protons + Helium nuclei spectrum measured
- Heavier nuclei, chemical composition, etc. measurements ongoing
- Contribution to photon detection and analysis
 - excellent energy resolution
 - many different sources and items studied
 - significant statistics is being accumulated
Thank you
The Silicon TracKer (STK)

- 48 μm wide Si strips - 121 μm pitch
- 95×95×0.32 mm³ Silicon Strip Detectors (SSD) - 768 strips
- 1 ladder composed by 4 SSDs
- 16 ladders per layer (76×76 cm²)
- 12 layers (6x + 6y)

Analog Readout of each second strip:
384 channels / SSD- Ladder
Charge sharing
The CALOrimeter

- 14 alternate orthogonal layers, each of 22 BGO bars
 - Total 308 bars
 - Dimensions of a bar: 2.5×2.5×60 cm³
 - Total depth ~32 X_0, ~1.6 λ

- One PMT at each BGO bar end
 - Two PMTs per bar, total 616 PMTs

- Electronics boards attached to each side of the module

- Deposited energy ranges: 2 MeV – 2 TeV and 10 MeV – 5 TeV
The PSD and the NUD

- **PSD**
 - 2 layers \((x \text{ and } y)\), each is 82×82 cm\(^2\)
 - 88×2.8×1 cm\(^3\) scintillator bars
 - Staggered by 0.8 cm in each layer

- **NUD**
 - 4 large area boron-doped plastic scintillators, 30×30×1 cm\(^3\) each
 - Wrapped in Al for photon reflection
The DAMPE triggers

<table>
<thead>
<tr>
<th>Trigger Type</th>
<th>Logic</th>
<th>Energy Threshold</th>
<th>Pre-scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE</td>
<td>L1_P_dy5 & L2_P_dy5 & L3_P_dy5 & L4_N_dy8</td>
<td>~10 MIPs & ~10 MIPs & ~10 MIPs & ~2 MIPs</td>
<td>1</td>
</tr>
<tr>
<td>MIPs (Type I)</td>
<td>L3_P_dy8 & L11_P_dy8 & L13_P_dy8</td>
<td>~0.4 MIPs & ~0.4 MIPs & ~0.4 MIPs</td>
<td>4 (low latitude(±20°))</td>
</tr>
<tr>
<td>MIPs (Type II)</td>
<td>L4_P_dy8 & L12_P_dy8 & L14_P_dy8</td>
<td>~0.4 MIPs & ~0.4 MIPs & ~0.4 MIPs</td>
<td>4 (low latitude(±20°))</td>
</tr>
<tr>
<td>LE</td>
<td>L1_N_dy8 & L2_N_dy8 & L3_N_dy8 & L4_N_dy8</td>
<td>~0.4 MIPs & ~0.4 MIPs & ~2 MIPs & ~2 MIPs</td>
<td>8 (low latitude(±20°))</td>
</tr>
<tr>
<td>Unbiased</td>
<td>(L1_P_dy8 & L1_N_dy8)</td>
<td>~0.4 MIPs & ~0.4 MIPs</td>
<td>512 (low latitude(±20°))</td>
</tr>
<tr>
<td></td>
<td>(L2_P_dy8 & L2_N_dy8)</td>
<td>~0.4 MIPs & ~0.4 MIPs</td>
<td>2048 (other region)</td>
</tr>
</tbody>
</table>
STK alignment

- STK alignment is performed once every two weeks
 - MIPs (non-showering particles) are used to correct the alignment
 - a spatial resolution < 40 μm on central STK planes is achieved
Dark Matter search targets

Satellite galaxies
Low background and good source id, but low statistics

Galactic Center
Good statistics, but source confusion/diffuse background

Milky Way Halo
Large statistics, but diffuse background

Dwarf Galaxies
Known location and DM content
Low statistics

Spectral Lines
Little or no astrophysical uncertainties, good source id, but low sensitivity because of expected small branching ratio

Galaxy Clusters
Low background, but low statistics

Isotropic contributions
Large statistics, but galactic diffuse background
Sources of high-energy cosmic photons

- The study of cosmic HE photons gives invaluable information on sources and physical phenomena.

Extragalactic

- Blazars
- Radio Galaxies
- Starburst Galaxies
- Globular Clusters
- SNRs
- PWN
- TGFs
- Pulsars
- γ-ray Binaries
- Galactic structures
- EM and GW
- GRBs

Galactic

- Sun
- Novae
- Moon
- Earth
- Globular Clusters
- SNRs
- PWN
- TGFs
- Pulsars
- γ-ray Binaries
- Galactic structures

Local

- Blazars
- Radio Galaxies
- Starburst Galaxies
- Globular Clusters
- SNRs
- PWN
- TGFs
- Pulsars
- γ-ray Binaries
- Galactic structures
- EM and GW
- GRBs

Unidentified Sources
Cosmic photons production and interaction

hadronic
- Proton synchrotron
- Bethe-Heitler pair production
- Photopion (n⁺ component)
- Photopion (n⁻ component)
- Photopion (n⁰ component)

leptonic
- Electron synchrotron
- Inverse Compton scattering
- Photon-photon pair production
- Electron-positron annihilation
Cosmic rays

- High-energy atomic nuclei and traces of e^-, e^+, \bar{p}
- Energies: $\sim 10^8$ eV $\rightarrow \sim 10^{20}$ eV

<table>
<thead>
<tr>
<th>Categories</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>hadronic interactions</td>
</tr>
<tr>
<td>Production</td>
<td>decay of π^0's, etc. into photons</td>
</tr>
<tr>
<td>Interactions</td>
<td>observation of photons</td>
</tr>
<tr>
<td>Identification</td>
<td>features of sources</td>
</tr>
<tr>
<td>Acceleration</td>
<td>interaction with ISM</td>
</tr>
<tr>
<td>Solar Modulation</td>
<td>etc...</td>
</tr>
</tbody>
</table>

Latest measurements of CR spectrum