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What is effective locality (2010 +..) ?
EL : An exact non-perturbative property of QCD. Derived by
means of functional methods of quantization in the Lagrangian
Quantum Field Theory context.

A formal statement of EL

- For any fermionic 2n-point Green’s functions (and related
amplitudes?), the full gauge-fixed sum of cubic and quartic
gluonic interactions, fermionic loops included, results in a local
contact-type interaction.

- This local interaction is mediated by a tensorial field
antisymmetric both in Lorentz and color indices. The resulting
sum is fully gauge-fixing independent, that is, gauge-invariant.

- The gauge-invariant summation of gluonic degrees at the
origin of EL does not (seem to) meet the Gribov copies issue.



Effective locality in a symbolic picture
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What is effective locality? ..

In EL elementary perturbative degrees, gluonic, are integrated
out.

Now Is it possible to derive QCD g2-perturbative expansions out
of EL ?

In similitude to other non-perturbative attempts (Light Front
QCD, S. Brodsky et al., Dyson-Schwinger Eqs. , D. Kreimer et
al., axiomatic analysis, P. Lowdon ?),

answer seems to be negative

At large enough scattering sub-energies, ŝ, still, there is an EL
form of non-perturbative Asymptotic Freedom.

- Not the perturbative Asymptotic Freedom of QCD ..

- But the expression that non-perturbative effects are washed
out beyond a certain energy scale ( ∼ 400MeV ).



What effective locality is not ..

Taking a look at ‘the coupling’s scaling laws’ for 2n-pts Green’s functions

- Original (perturbative) forms of couplings (to Aa
µ-fields and

quark’s spins, O(g2)) [
O(g) + O(g2)

]
- EL couplings (to χa

µν, O(g) = gf abc ·χa
µν, and quark’s spins,

O(g2)) [ 1
O(g) + O(g2)

]{
A + B g + C g2

}
No quark fields in pure YM : B = C = O(g2) = 0, the famous
duality rule g→ g−1 is recovered.
Now, contrarily to the pure YM case (H. Reinhardt et al.’91),

EL form is not dual to the original QCD one.



What is Effective Locality? ..

EL could be the very mode non-abelian gauge-invariance is
realised in the non-perturbative regime of QCD (2017).

- EL gauge invariance is a direct consequence of its full
gauge-fixing independance (EL formal statement).

- Most rewarding consequence : The never-ending Gribov’s
copies issue may be irrelevant to the non-perturbative regime of
QCD.

- Gribov’s copies are bound to perturbative QCD (C. Becchi !)

- Gribov’s issue practical/theoretical intractability could be highly
suggestive that (again!) non-perturbative QCD cannot be
reached out of Perturbation Theory.



What is Effective Locality? ..

EL goes along with an enigmatic mass scale µ coming into play

through an unavoidable, still non sensical, δ(2)(b) where b = |~b|
is the (transverse) inter-quark separation in a 2-by-2 scattering
quark process.

Now in a QCD theory where confinement and chiral symmetry
breaking hold, then necessarily b must fluctuate (Casher’79,
Brodsky, Shrock’ 09)

δ
(2)(~b)−→ ϕ(b) =

µ2

π

1−ξ/2

Γ( 1
1−ξ/2)

e−(µb)2−ξ

, ξ ∈ R+, ξ� 1,

→ Intriguing connections to Levy flights, Lowest Landau Levels
and non-commutative geometry (De Moyal planes) ..



EL outputs at ‘tree level’

If an idea is good it is good at ‘tree-level’ Wisdom says

- Almost linear confining potential for dynamical quarks

- Deuteron (Jastrow’s) potential reproduced

- QCD Green’s functions (eikonal and quenched
approximations) complying with a general/formal statement
(Meijer special functions).

- Mixture of partonic and non-perturbative dependences, as it
should (also a demand of Light-Front QCD)

- Extended AF, as supported by a Dyson/Schwinger Eq.
analysis and discontinuity w.r.t P.T.

- Green’s functions exhibiting the full algebraic content of
SUc(3) : C2 and C3 Casimir operators.

- Satisfying reproduction of the ISR/LHC p-p elastic differential
cross sections dσ/dt (Cf. P. Tsang talk )



Non-perturbative QCD as seen from EL

Much remains to be explored

If EL is relevant to non-perturbative QCD does it shed some light
on Chiral Symmetry Breaking (χSB)?

What could be the relation of χSB to the EL mass scale, µ ?

What about EL and Confinement ?



Order parameter of χSB

- Contrary to first ideas bearing on the number of quark flavours,
χSB, if any, is obtained out of a single quark flavor.

- Among others, the fermionic condensate < Ψ̄Ψ(x) > is an
order parameter of chiral symmetry breaking and can be
obtained out of < Ψ̄(x)Ψ(y) > in the limit of x = y

- 1st step: quenching and some mild eikonal approximation will
be used to deal with involved calculations. < Ψ̄(x)Ψ(y) > is
thus,
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Basic steps of an involved calculation..

χa
µν-fields : used to linearize the original non-abelian F 2-term.
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Insertion for GF (x ,y |A) of a Schwinger-Fradkin’s representation
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+ refers to s′-Schwinger proper-time ordering, uµ(s′), the
Fradkin’s fields, λas the Lie algebra generators of SUc(3) in the
fundamental representation, and
h(s1,s2) = s1Θ(s2− s1) + s2Θ(s1− s2).



Basic steps of the < Ψ̄Ψ(x) > calculation..

Two contributions come about whose non vanishing one as
m→ 0, reads

< Ψ̄Ψ(x) >= lim
y→x
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Basic steps for < Ψ̄Ψ(x) > ..

At large coupling, g >> 1, the result of functional differentiations
followed by A→ 0 reads
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Involved enough an expression to deal with!



Basic steps for < Ψ̄Ψ(x) > ..

Doable, still, thanks to a standard analytic continuation of
Random Matrix theory

Provided that the functional measure d [χ] can be taken to a
measure dM on the (finite dimensional) space of real symmetric
traceless D(N2

c −1) × D(N2
c −1) matrices : Permitted by

the measure image theorem in Wiener functional space, which
applies thanks to EL !

At real-valued Halpern-fields χa
µν, in the adjoint representation of

SUc(3) one has with f abc = i(T a)bc , N = D(N2
c −1) = 32,

f ·χ→
N2

c−1

∑
a=1

χ
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< Ψ̄Ψ(x) > .. RM-measure of integration

Integration on d [χ] is now carried out with the Random Matrix measure
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< Ψ̄Ψ(x) > .. RM-measure of integration

Integration factorises : dM = d(Sp M)×dO(p)

While the latter, over ON(R) , generates the full SUc(3)
algebraic content of fermionic Green’s functions (C2 and C3

Casimir operator dependences), the former leads to an analytic
integrand (−∞ < ξi < +∞),
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because M-matrices are skew-symmetric.

Now, this still entails 2120 monomials !!
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An intractable task



The contribution of a monomial ..

.. can be calculated and is trivialised by the Trace,
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Not due to the eikonal neglect of σµνF a
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Fradkin representation of GF (x ,y |A)

Trivialised a second time by the integration on ON(R) !
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Each monomial contributes 0 × 0 !



Contribution of a monomial .. (still ?!)

As in massive (QED)2, circumvented by calculating
< Ψ̄Ψ(x)Ψ̄Ψ(y) > in a definite x− vs− y config.

−→ a non vanishing sum of terms no longer zero identically
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Now how to control the sum of so many monomials with alternate signs ?



Contribution of all of the 2120 monomials

Relying on Wigner’s (asymptotic, N→ ∞) semi-circle law
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systematic way.



Result

〈Ψ̄Ψ(x)〉 '−g2 µ3 · µ√
Ep

√
E2−p2

Ep

3

· 45(Nc−1)√
π5N3

I(N)

vol(ON(R)
.

with,

I(N) =
∫ +

√
2N

−
√

2N

dΘ

Θ

√
2N−Θ2 Φ(Θ

√
N)

where Φ(x) is the probability integral, and,

vol(ON(R) =
2Nπ

N(N+1)
4

∏
N
1 Γ(k

2 )

E ,p energy and momentum of scattering quarks in their cms.



Conclusions
I EL seems to involve χSB (quenching being not a proviso).
I There would be a close relation of µ to 〈Ψ̄Ψ(x)〉 ∼ µ3.
I A relation modulated by some partonic damping function

accounting for the disappearance of non-perturbative
effects at short distances,

µ√
Ep

√
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3

, E ,p≥ µ scattering quarks cms 4−mom.

I The Vandermonde issue circumvented by Wigner’s law with
available systematic corrections

I A partonic damping function requiring a 4-pt. calculation.. a
possibly meaningful fact regarding the non-perturbative
phase of QCD. EL doesn’t seem to favour much the long
held relation of χSB to the quark’s massive pole in the
dressed propagator..itself, an (axiomatic) issue !..


