Lifshitz Regime and the phase diagram of QCD

R. Pisarski, F. Rennecke, V. Skokov, A. Tsvelik, S. Valgushev

ICNFP 2019, 22 August 2019

OAK, Crete, Greece
QCD at finite density

Large μ : 1st order phase transition

$\mu = 0$: crossover at $T = 154$ MeV

Meet at a critical end-point: 2nd order

First-principle lattice: prohibitively challenging due to sign problem
Signs of CEP?

Lattice: small \(\mu \), Taylor expansion & estimate radius of convergence, Cluster expansion

No signs of CEP from lattice so far

Hot QCD
Arxiv: 1701.04325

Vovchenko, Steinheimer, Philipsen, Stoecker
Arxiv: 1701.04325
Lifshitz regime: alternative scenario?

- Quark-Gluon Plasma
- Lifshitz regime
- T_0
- T \uparrow
- Hadronic
- μ \rightarrow
- Crossover
- 1st order line
- Chiral spirals
- Quark matter
O(N) effective model

\[\mathcal{L} = \frac{1}{2} (\partial_0 \phi)^2 + \frac{1}{2M^2} (\partial_i \phi)^2 + \frac{Z}{2} (\partial_i \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4} (\phi^2)^2 + \ldots \]

Implicitly assume finite density

\[Z \text{ is allowed to be negative:} \]

Gap closes as \(Z \) gets sufficiently negative:

Local symmetry breaking!

\[\phi(x) = \phi_0 (\cos(k_0 z), \sin(k_0 z)) \]

Chiral spiral

Anisotropic fluctuations

\[\Delta^{-1} = m_{\text{eff}}^2 - 2Z(k_z - k_0)^2 + \frac{1}{M^2} (4k_0 k_z \vec{k}^2 + (\vec{k}^2)^2) \]

A’la roton condensation in superfluid?
O(N) effective model

Mean-field phase diagram

Lifshitz pt

\[\langle \phi \rangle \neq 0 \quad \langle \phi \rangle = 0 \]

\[\langle \phi \rangle_{CS} \neq 0 \]
Effects of quantum fluctuations: dramatic change
No Lifshitz point, but Lifshitz regime

\[\langle \phi(x)\phi(0) \rangle \sim e^{-m_0 x} \]

\[\langle \phi(x)\phi(0) \rangle \sim e^{-m_0 x} \cos(k_0 x) \]

\[\Delta m^2 \sim \lambda \int d^2k_\perp dk_z \frac{1}{(k_z - k_0)^2 + m_{\text{eff}}^2 + \ldots} \sim \lambda \int_M d^2k_\perp \int_{m_{\text{eff}}}^M dk_z \frac{1}{(k_z - k_0)^2} \sim \lambda \frac{M}{m_{\text{eff}}} \]
Fate of the Chiral Spiral

Brazovsky-type phase transition: universal, appears due to anisotropic fluctuations

Effective dimensional reduction to 1-*dim*

\[\phi(z) \]

Phonon fluctuations!

Long-range order is destroyed

Lattice: detection of such phase is challenging
Real-world example: inhomogeneous polymers

Mixture of polymers A & B:

- homopolymer: A^8B^8
- AB diblock copolymer: (co-AB)

Experiment vs. Self-consistent field theory
Relation to QCD

Fermi surface

\[\Lambda_s \]
\[\mu \]

\[\alpha_s(\mu) \ll 1 \]

Quarkionyc matter: effectively 1+1-dim patches (few are shown)

Suggestive argument in 1+1 dim: \(\mu \) can be eliminated in the expense of Chiral Spiral:

\[\bar{q}q = \cos(2\mu z)\bar{q}q + i\sin(2\mu z)\bar{q}\gamma_5 q \]

Quasi-long range order due to phonons: R. Pisarski, V. Skokov, A. Tsvelik, Arxiv:1801.08156
Conclusions

1) *Lifshitz regime instead of Lifshitz point (contrary to NJL models)*

2) *Non-perturbative generation of negative Z is essential*

3) *Relation to standard CEP is unclear: both can co-exist*

4) *Lattice SU(2) “QCD” simulation?*