Lifshitz Regime and the phase diagram of QCD

R. Pisarski, F. Rennecke, V. Skokov, A. Tsvelik, <u>S. Valgushev</u>

ICNFP 2019, 22 August 2019

OAK, Crete, Greece

QCD at finite density

Large μ : 1st order phase transition

 $\mu=0$: crossover at T = 154 MeV

Meet at a critical endpoint: 2nd order

First-principle lattice: prohibitively challenging due to sign problem

Signs of CEP?

Lattice: small mu, Taylor expansion & estimate radius of convergence, Cluster expansion

No signs of CEP from lattice so far

Hot QCD Arxiv: 1701.04325 Vovchenko, Steinheimer, Philipsen, Stoecker Arxiv:1701.04325

Lifshitz regime: alternative scenario?

O(N) effective model

$$\mathcal{L} = \frac{1}{2} (\partial_0 \phi)^2 + \frac{1}{2M^2} (\partial_i^2 \phi)^2 + \frac{Z}{2} (\partial_i \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4} (\phi^2)^2 + \dots$$

Implicitly assume finite density

Z is allowed to be negative:

Gap closes as Z gets sufficiently negative:

Local symmetry breaking!

$$\phi(x) = \phi_0(\cos(k_0 z), \sin(k_0 z))$$

Chiral spiral

$$\Delta^{-1} = m_{eff}^2 - 2Z(k_z - k_0)^2 + \frac{1}{M^2} (4k_0k_z\vec{k}^2 + (\vec{k}^2)^2)$$

Anisotropic fluctuations

A'la roton condensation in superfluid?

O(N) effective model

Mean-field phase diagram

$$2^{
m nd}
ightarrow Z\uparrow$$
 $\langle\phi
angle
eq 0$ $\langle\phi
angle = 0$ Lifshitz pt $m^2
ightarrow$ $1^{
m st}\uparrow$ $\langle\phi
angle_{CS}
eq 0$ $2^{
m nd}\uparrow$ $\langle\phi
angle = 0$ $\langle\phi
angle_{CS}
eq 0$ $\langle\phi
angle_{CS}
eq 0$

Infinite N phase diagram

Effects of quantum fluctuations: dramatic change

No Lifshitz point, but Lifshitz regime

$$\Delta m^2 \sim \lambda \int d^2 k_{\perp} dk_z \frac{1}{(k_z - k_0)^2 + m_{\rm eff}^2 + \dots} \sim \lambda \int^M d^2 k_{\perp} \int_{m_{\rm eff}} dk_z \frac{1}{(k_z - k_0)^2} \sim \lambda \frac{M}{m_{\rm eff}}$$

Fate of the Chiral Spiral

Brazovsky-type phase transition: universal, appears due to anisotropic fluctuations

Effective dimensional reduction to 1-dim

Lattice: detection of such phase is challenging

Real-world example: inhomogeneous polymers

Mixture of polymers A & B:

Experiment

Self-consistent field theory

Relation to QCD

Suggestive argument in 1+1 dim: μ can be eliminated in the expense of Chiral Spiral:

$$\bar{q}q = \cos(2\mu z)\bar{q}q + i\sin(2\mu z)\bar{q}\gamma_5q$$

Quasi-long range order due to phonons:

R. Pisarski, V. Skokov, A. Tsvelik, Arxiv:1801.08156

Conclusions

- 1) Lifshitz regime instead of Lifshitz point (contrary to NJL models)
- 2) Non-perturbative generation of negative Z is essential
- 3) Relation to standard CEP is unclear: both can co-exist
- 4) Lattice SU(2) "QCD" simulation?