

Heavy Flavor jets in ALICE

Artem Isakov for the ALICE collaboration NPI CAS

ICNFP 2019, Crete, 28.05.2019

Introduction

Introduction

Quark Gluon Plasma (QGP) is created in heavy-ion collisions

Introduction

Signatures of QGP:

 Collective flow: QGP acts like nearly-perfect liquid
 Jet quenching:

QGP slows penetrating patrons

Quark Gluon Plasma (QGP) is created in heavy-ion collisions

Jets

Jet – a collimated spray of hadrons, created during hadronization of quark or gluon after hard scattering, defined via algorithm

Jets

Jet – a collimated spray of hadrons, created during hadronization of quark or gluon after hard scattering, defined via algorithm

Features of heavy-flavor quarks:

- Large mass → it can be created only in initial hard scatterings. Its production rate can be calculated from pQCD
- Long lifetime \rightarrow it survives through the whole evolution of QGP
- Smaller energy loss by radiative process for quarks with higher mass (Dead-cone effect*)

$$\Delta E_{g}^{rad} > \Delta E_{u,s,d}^{rad} > \Delta E_{c}^{rad} > \Delta E_{b}^{rad}$$

[*] Yu.L. Dokshitzer, D.E. Kharzeev - "Heavy Quark Colorimetry of QCD Matter", arXiv:hep-ph/0106202]

• Fraction of the jet momentum carried by the tagged meson along axis direction

$$z_{\parallel} = \frac{\vec{p_{jet}} \cdot \vec{p_{tagged}}}{\vec{p_{jet}} \cdot \vec{p_{jet}}}$$

- In pp, constrains models
- In AA collisions, enables to study medium-induced modification of collinear fragmentation for HF quarks

D.P. Anderle et al., D*±-jets, pp, 7 TeV. [PRD 96 (2017) 034028]

 Nuclear modification factor compares particle yield in HI and binary scaled pp collisions

$$R_{\rm AA} = \frac{\mathrm{d} N_{\rm AA} / \mathrm{d} p_{\rm T}}{\langle N_{\rm coll} \rangle \cdot \mathrm{d} N_{\rm pp} / \mathrm{d} p_{\rm T}}$$

In pA collision system:

• If $R_{pA}!=1 \rightarrow$ presence of CNM effects

In AA collision system:

 If R_{AA} < 1 at intermediate-high p_T → indication of final state effects (in medium energy loss)

CMS, Phys.Lett. B 772 (2017) 306-329er

ALICE is focused on **low-** p_{T} **sector**

ALICE experiment

D⁰ - tagged jets in pp at √s = 7 TeV: Analysis overview

1) D⁰ - meson selection

• Hadronic decay channel:

 $D^{0} \rightarrow K^{-}\pi^{+}, BR = 3.89\%$ $\overline{D^{0}} \rightarrow K^{+}\pi^{-}$

- D^o decay vertex is reconstructed from a pair of tracks with opposite charge
 - $|\eta_{\text{track}}| < 0.8$
 - *p*_{T, track} > 0.3 GeV/*c*
- PID selection: TPC dE/dx, TOF
- Topological cuts
 - Sum of D^o daughter momenta points to the PV
 - Geometrical selections

ALICE, to be published in JHEP

D⁰ - tagged jets in pp at √s = 7 TeV: Analysis overview

1) D^o - meson selection

2) Jet reconstruction and D⁰-meson tagging

- Before jet reconstruction π and K daughters are removed and replaced by the mother D⁰
- Charged tracks
- |η| < 0.8
- FASTJET Anti- k_{τ} jet finding algorithm with jet radius R = 0.4
- $p^{ch}_{T,jet} > 5 \text{ GeV/}c, p_{T, D} > 3 \text{ GeV/}c$
- Only one D^o candidate per one jet

D⁰ - tagged jets in pp at √s = 7 TeV: Analysis overview

1) D^o - meson selection

2) Jet reconstruction and D^o-meson tagging

3) D⁰-meson tagged jet yield extraction

- For each D^o p_{τ} bin, K and π invariant mass spectrum was fitted with a sum of background, reflection template and signal shapes
- D⁰-jet candidates were corrected for background by means of side-band method

D⁰ - tagged jets in pp at √s = 7 TeV: Analysis overview

Cross-section calculted with formula:

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d} p_{\mathrm{T,jet}}^{\mathrm{ch}} \mathrm{d} \eta_{\mathrm{jet}}} (p_{\mathrm{T,jet}}^{\mathrm{ch}}) = \frac{1}{\mathscr{L}} \frac{1}{\mathrm{BR}} \frac{N(p_{\mathrm{T,jet}}^{\mathrm{ch}})}{\Delta \eta_{\mathrm{jet}} \Delta p_{\mathrm{T,jet}}^{\mathrm{ch}}}$$

D⁰ - tagged jets in pp at √s = 7 TeV: <u>Production cross-section</u>

Comparison to models:

- Cross-section: Both versions of PYTHIA overestimate the yield by a factor ≈ 1.5
- Ratio for D⁰ and inclusive jets: All models describe quite well the ratio of D⁰meson tagged jets over the inclusive jet production

- 5 < *p*^{ch}_{T, jet} < 15 GeV/*c*
- Good agreement with Herwig 7 and PYTHIA6/8 generators, POWHEG+ PYTHIA6 simulations

ALT-PUB-321582

AT.T-PUB-321590

D⁰ - tagged jets in pp at \sqrt{s} = 7 TeV: D⁰ jet cross section as a function of z_{\parallel}^{ch}

- Good agreement with PYTHIA6/8 generators, but Herwig7 shows some tension at high z_{II}^{ch}
- POWHEG+ PYTHIA6 simulations for $z_{\parallel}^{ch} < 0.9$

1) Jet reconstruction

- Charged anti- $k_{\rm T}$, R = 0.4
- $p_{T, \text{ constituent}} > 0.15 \text{ GeV/c}$
- $|\eta_{\rm jet}| < 0.9 R < 0.5$
- $|z_{vtx}| < 10 \text{ cm}$
- $p_{\rm T}$ of the jets corrected on the mean underlying event density

1) Jet reconstruction

2) B-Jet candidate selection

- SV constructed out of 3 prongs
- The most displaced SV considered in each event
- Discrimination variables:

1) Significance of the distance between PV and SV:

- SLxy = $Lxy/\sigma Lxy > 5, 6, 7, 8, 9$
- 2) Dispersion of the SV $\sigma_{\rm sv}$ < 0.02, 0.03, 0.04, 0.05 cm

$$\sigma_{SV} = \sqrt{\sum_{i=1}^{3} d_i^2}$$

 d_i – distance of the closest approach (DCA) of *i*-th prong to SV

3) Invariant mass in SV (reserved for purity estimation)

1) Jet reconstruction

2) B-Jet candidate selection

3) Correction on SV tagging efficiency

- Jet yield estimated based on PYTHIA+EPOS simulation
- Efficiencies for different b-jet candidates after imposing the default cut:

$$\epsilon_{\rm b} \approx 35$$
 %, $\epsilon_{\rm c} \approx 11$ %, $\epsilon_{\rm LF} \approx 1$ %

1) Jet reconstruction

2) B-Jet candidate selection

3) Corrections on efficiency and purity

- Jet yield was corrected on efficiency of SV tagging (estimated with PYTHIA + EPOS)
- Purity of b jets was estimated using the following method:
 - Data-driven template fit method

1) Jet reconstruction

2) B-Jet candidate selection

3) Corrections on efficiency and purity

- Jet yield was corrected on efficiency of SV tagging (estimated with PYTHIA + EPOS)
- Purity of b jets was estimated using the following method:
 - Data-driven template fit method
 - POWHEG + PYTHIA simulation was used to calculate purity for high- p_{T} region

$$P_{\rm b} = \frac{N_{\rm b}\varepsilon_{\rm b}}{N_{\rm b}\varepsilon_{\rm b} + N_{\rm c}\varepsilon_{\rm c} + N_{\rm LF}\varepsilon_{\rm LF}}$$

 $N_{\rm b}$, $N_{\rm c}$ – folded <u>POWHEG</u> $p_{\rm T}$ spectrum of *b* and *c*-jets

 $N_{LF} = \underline{RAW} p_{T}$ spectrum of inclusive jets – $N_{b} - N_{c}$ ali-prel-323641

 $\epsilon_{\rm b}, \epsilon_{\rm c}, \epsilon_{\rm LF}$ – efficiency of SV tagging for b, c and LF-jets for given $SL_{\rm xv}$ and $\sigma_{\rm sv}$

Probability density (c²/GeV) **ALICE Preliminan** $20 < p_{\text{T,iet}}^{\text{ch, rec}}$ $L_{xy}/\sigma_{L_{-}} > 7, \sigma_{sy} < 0.03 \text{ cm}$ p–Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ anti-k, charged jets 10-1 $R = 0.4, |\eta^{\text{lab}}| < 0.5$ 10^{-2} b jets 10^{-3} Fit Raw data Raw data / Fit Invariant mass of secondary vertex (GeV/c²) b-jet purity ALICE Preliminary b-tagged charged jets $p-Pb\sqrt{s_{NN}} = 5.02 \text{ TeV}$ anti- $k_{\rm T}$, R = 0.4, $|\eta_{\rm res}^{\rm jet}| < 0.5$ 0.6 $L_{xy}/\sigma_{L} > 7$ $\sigma_{\rm SV} < 0.03 \, {\rm cm}$ 0.5 0.3 Data-driven evaluation 0.2 POWHEG-based evaluation Systematics of the POWHEG-based evaluation 80 $p_{-}^{ch, reco} (GeV/c)$

ICNFP 2019

Isakov Artem

1) Jet reconstruction

2) B-Jet candidate selection

3) Corrections on efficiency and purity

- Jet yield was corrected on efficiency of SV tagging (estimated with PYTHIA + EPOS)
- Purity of b-jet was estimated using the following method:
 - Data-driven template fit method
 - POWHEG + PYTHIA simulation was used to calculate purity for high- p_{τ} region
 - Purities obtained based on different POWHEG settings were compared with the template fit results.

ALI-PREL-323641

ICNFP 2019

• $p_{\rm T}$ spectrum of the b jets was corrected:

 $\frac{\mathrm{d} N_{\mathrm{b-jet}}^{\mathrm{primary}}}{1} = \frac{\mathrm{d} N_{\mathrm{b-jet candidates}}^{\mathrm{raw}} \times \frac{P_{\mathrm{b}}}{\varepsilon_{\mathrm{b}}}$

- d p_{T, jet ch} d p_{T, jet ch}
 Jet momentum smearing due to instrumental effects and local background fluctuations was corrected by unfolding
- Result cross section shows good agreement with the model (POWHEG HVQ)

HFe jets in p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV:

Analysis overview

1) HF electrons selection

- c, b -> semileptonic decay producing e[±]
- PID selection: TPC dE/dx, EMCal
- $p_{T,e} > 4 \text{ GeV/c}$

HFe jets in p-Pb at √s_{NN}= 5.02 TeV: Analysis overview

1) HF electrons selection

2) Jets reconstruction

- Charged tracks
- FASTJet anti- k_{T} algorithm
- Jet radius *R* = 0.3, 0.4, 0.6
- $|\eta_{jet}| > 0.9 R$
- $p_{T,jet}^{ch} > 10 \text{ GeV/c}$
- Jets with reconstructed electrons
- $p_{\rm T}$ of the jets corrected on the mean background density

HFe jets in p-Pb at √s_{NN}= 5.02 TeV: Analysis overview

- 1) HF electrons selection
- 2) Jets reconstruction

3) Corrections

- Background from photonic $e^{\scriptscriptstyle\pm}$
- Hadron contamination
- Reconstruction efficiency

HFe jets in p-Pb at √s_{NN}= 5.02 TeV: cross-section

- Measured cross-section shows good agreement with the model (POWHEG+PYTHIA8)
- R_{pA} is compatible with unity. No sign of suppression

Summary

- Measurement of D⁰-tagged jets in pp at \sqrt{s} = 7 TeV:
 - *z*[∥]_{ch} cross-section
 - Cross-section of D^o tagged jets production
- Measurement of b jets in p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV:
 - First results in cross-section of B-jets production
- Measurement of HFe jets in p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV:
 - No sign of jet quenching is observed or other medium-induced modification

Backup

B jets in pPb: Physics motivation

pPb collisions:

- Study cold nuclear matter (CNM) effects (nPDF, shadowing, gluon saturation, k_{T} -broadening, energy loss in CNM in the initial and final states)
- Study of the possible collective effects

ALICE wants to study b-jets at lower momenta where CNM effects will be more significant

Was used two independent approaches:

- Most displaced Secondary Vertex (SV)
- Track counting algorithm (IP)

(pPb, 5.02 TeV, full jets 2018)

Dead cone effect

"Gluonsstrahlung" - process of gluon radiation by quarks (or gluons)

"Dead cone" effect – gluon radiation from massive quarks is suppressed at angles $\theta < m/E \rightarrow Less E$ loss inside the medium for heavy quarks expected

[Yu.L. Dokshitzer, D.E. Kharzeev - "Heavy Quark Colorimetry of QCD Matter", arXiv:hep-ph/0106202]

Gluonsstrahlung probability ~ $\frac{\theta^2}{\left[\theta^2 + (m/E)^2\right]^2}$

Probability of gluon emission

For light quarks:

$$dP_0 \simeq \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{dk_T^2}{k_T^2} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{d\theta^2}{\theta^2}$$

For heavy quarks:

$$dP_{HQ} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{k_T^2 dk_T^2}{(k_T^2 + \omega^2 \theta_0^2)^2} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\theta^2 d\theta^2}{(\theta^2 + \theta_0^2)^2}$$
$$\theta_0 = \frac{M}{E}$$

Where

 $\mbox{$\omega$}$ - Energy, C_F - "color charge", k_T - transverse momenta dP_0 - Probability to radiate gluon

Probability of gluon emission

For light quarks:

$$dP_0 \simeq \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{dk_T^2}{k_T^2} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{d\theta^2}{\theta^2}$$

For heavy quarks:

$$dP_{HQ} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{k_T^2 dk_T^2}{(k_T^2 + \omega^2 \theta_0^2)^2} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\theta^2 d\theta^2}{(\theta^2 + \theta_0^2)^2}$$
$$\theta_0 = \frac{M}{E}$$

Where

 $\mbox{$\omega$}$ - Energy, C_F - "color charge", k_T - transverse momenta dP_0 - Probability to radiate gluon