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Quark Gluon Plasma (QGP) is created in heavy-ion collisions
 



  

Introduction 

Signatures of QGP:
 

●   Collective flow: 
QGP acts like nearly-perfect liquid 
 

●  Jet quenching: 
QGP slows penetrating patrons

● …..
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Quark Gluon Plasma (QGP) is created in heavy-ion collisions
 



  

Jets

Jet – a collimated spray of hadrons, created during hadronization of quark or 
gluon after hard scattering, defined via algorithm
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Jets

● Large mass → it can be created only in initial hard scatterings.  Its production 
rate can be calculated from pQCD

● Long lifetime →  it survives through the whole evolution of QGP
● Smaller energy loss by radiative process for quarks with higher mass 

(Dead-cone effect*) 
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Jet – a collimated spray of hadrons, created during hadronization of quark or 
gluon after hard scattering, defined via algorithm

  

 

Features of heavy-flavor quarks:

Δ Eg
rad>Δ Eu,s,d

rad >Δ Ec
rad>Δ Eb

rad

[*] Yu.L. Dokshitzer, D.E. Kharzeev - “Heavy Quark Colorimetry of QCD Matter”, arXiv:hep-ph/0106202]



  

Fragmentation function
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● Fraction of the jet momentum carried by the 
tagged meson along axis direction

● In pp, constrains models
● In AA collisions, enables to study medium-induced 

modification of collinear fragmentation for HF 
quarks

z ||=
p⃗ jet⋅ ⃗p tagged

p⃗ jet⋅p⃗ jet

D.P. Anderle et al., D*±-jets, pp, 7 TeV. 
[PRD 96 (2017) 034028]



  

Nuclear modification factor
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● Nuclear modification factor compares particle yield in 
HI and binary scaled pp collisions

In pA collision system:
● If R

pA 
!= 1 → presence of CNM effects

In AA collision system: 
● If R

AA
 < 1  at intermediate-high p

T
 →  indication of  final 

state effects (in medium energy loss)

ALICE is focused on low-p
T
 sector 

CMS, Phys.Lett. B 772 (2017) 306–329er

RAA=
d N AA /d pT

< N coll >⋅d N pp/d pT



  

ALICE experiment

Time Projection Chamber
● Track reconstruction
● Particle identification via 

dE/dx

V0
● Scintillator array for triggering
● Estimation of centrality 

● Impact param. res. < 70 μm at 1 GeV/c
● |η

track
| < 0.9

● Full azimuth
● 0.5 T solenoid 
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Inner Tracking System
● Track reconstruction
● Primary and secondary 

vertex reconstruction

EMCal
● Triggering and reconstruntion of high-p

T
 jets

● Measurements of high-p
T
 e± and γ 



  

D0 - tagged jets in pp at √s = 7 TeV: 
Analysis overview

1) D0  - meson  selection

● Hadronic decay channel:
 

 

● D0  decay vertex is reconstructed from a 
pair of tracks with opposite charge 

● |η
track

| < 0.8
● p

T, track
 > 0.3 GeV/c

● PID selection: TPC dE/dx, TOF 
● Topological cuts

● Sum of D0 daughter momenta  points 
to the PV

● Geometrical selections 
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D0
→K-

π
+ , BR = 3.89%

D0
→K+

π
-

ALICE, to be published in JHEP



  

D0 - tagged jets in pp at √s = 7 TeV: 
Analysis overview
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1) D0  - meson  selection

2) Jet reconstruction and D0-meson 
tagging

● Before jet reconstruction  π and K 
daughters are removed and replaced by 
the mother D0

● Charged tracks 
● |η| < 0.8
● FASTJET Anti-k

T
 jet finding algorithm with 

jet radius R = 0.4
● pch

T,jet 
> 5 GeV/c, p

T, D 
> 3 GeV/c

● Only one D0 candidate per one jet

 



  

D0 - tagged jets in pp at √s = 7 TeV: 
Analysis overview
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1) D0  - meson  selection

2) Jet reconstruction and D0-meson tagging

3) D0-meson tagged jet yield extraction

● For each D0 p
T
 bin, K and π invariant mass spectrum was fitted with a sum of background,  

reflection template and signal shapes

● D0-jet candidates were corrected for background by means of side-band method



  

D0 - tagged jets in pp at √s = 7 TeV: 
Analysis overview
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1) D0  - meson  selection

2) Jet reconstruction and D0-meson tagging

3) D0-meson tagged jet yield extraction

4) Corrections

● Efficiency of the track reconstruction and of the 
topological cuts (PYTHIA6 Perugia 2011)

● B Feed-down contrubution (PYTHIA6 + 
POWHEG)

● Unfolded for detector effects
● Cross-section calculted with formula:

d2σ

d pT,jet
ch d ηjet

( pT,jet
ch )=

1
ℒ

1
BR

N ( pT,jet
ch

)

Δ ηjet Δ pT,jet
ch



  

D0 - tagged jets in pp at √s = 7 TeV: 
 Production cross-section
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Fraction of D0 jets in inclusive 
jets:

R ( pT,jet
ch

)=
ND0 jet ( pT,jet

ch
)

N inclusive jet ( pT,jet
ch )

Comparison to models:

● Cross-section: Both versions of PYTHIA overestimate the yield by a factor ≈ 1.5
● Ratio for D0 and inclusive jets: All models describe quite well the ratio of D0-

meson tagged jets over the inclusive jet production



  

D0 - tagged jets in pp at √s = 7 TeV: 
D0-jet cross section as a function of z

||
ch

 

ICNFP 2019                              Isakov Artem      12

● Momentum fraction carried by the D0 
meson in the direction of the jet axis:

● 5 < pch
T, jet 

< 15 GeV/c

z ||
ch
=

⃗pch jet⋅p⃗D0

⃗pch jet⋅ ⃗pch jet

R ( pT,jet
ch , z ||

ch
)=

N D0 jet ( pT,jet
ch , z ||

ch
)

N inclusive jet ( pT,jet
ch

)

● Good agreement with Herwig 7 and PYTHIA6/8 generators, POWHEG+ PYTHIA6 
simulations



  

D0 - tagged jets in pp at √s = 7 TeV: 
D0 jet cross section as a function of z

||
ch
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● Momentum fraction carried by the D0 
meson in the direction of the jet axis:

● 15 < pch
T, jet 

< 30 GeV/c

z ||
ch
=

⃗pch jet⋅p⃗D0

⃗pch jet⋅ ⃗pch jet

R ( pT,jet
ch , z ||

ch
)=

N D0 jet ( pT,jet
ch , z ||

ch
)

N inclusive jet ( pT,jet
ch

)

● Good agreement with PYTHIA6/8 generators, but Herwig7 shows some tension at high z
||
ch

● POWHEG+ PYTHIA6 simulations for z
||
ch < 0.9



  

B jets in p-Pb at √s
NN

= 5.02 TeV: Analysis overview
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1) Jet reconstruction 

● Charged anti-k
T
, R = 0.4

● p
T, constituent

 > 0.15 GeV/c 
● |η

jet
| < 0.9 – R < 0.5

● |z
vtx

| < 10 cm 
● p

T
 of the jets corrected on the mean 

underlying event density

 

L xy
±σ

Lx
y

Primary 
vertex

Jet



  

B jets in p-Pb at √s
NN

= 5.02 TeV: Analysis overview
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1) Jet reconstruction

2) B-Jet candidate selection

●  SV constructed out of 3 prongs 
●  The most displaced SV considered in each event
● Discrimination variables:

 1) Significance of the distance between PV and SV:  
● SLxy = Lxy/σLxy  > 5, 6, 7, 8, 9 

●  2) Dispersion of the SV σ
SV

 < 0.02, 0.03, 0.04, 0.05 cm

d
i 
– distance of the closest approach (DCA) of i-th prong to SV

3) Invariant mass in SV (reserved for purity estimation)

 

L xy
±σ

Lx
y

Primary 
vertex

Jet

σSV=√∑
i=1

3

d i
2



  

B jets in p-Pb at √s
NN

= 5.02 TeV: Analysis overview
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1) Jet reconstruction

2) B-Jet candidate selection

3) Correction on SV tagging efficiency

● Jet yield estimated based on PYTHIA+EPOS 
simulation

● Efficiencies for different b-jet candidates after 
imposing the default cut:

ε
b 
≈ 35 % , ε

c 
≈ 11 %, ε

LF 
≈ 1 %

 

 



  

B jets in p-Pb at √s
NN

= 5.02 TeV: Analysis overview
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1) Jet reconstruction

2) B-Jet candidate selection

3) Corrections on efficiency and purity

● Jet yield was corrected on efficiency of SV tagging 
(estimated with PYTHIA + EPOS)

● Purity of b jets  was estimated using the following 
method:

– Data-driven template fit method

 

 



  

B jets in p-Pb at √s
NN

= 5.02 TeV: Analysis overview
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1) Jet reconstruction

2) B-Jet candidate selection

3) Corrections on efficiency and purity

● Jet yield was corrected on efficiency of SV tagging 
(estimated with PYTHIA + EPOS)

● Purity of b jets was estimated using the following 
method:

– Data-driven template fit method
– POWHEG + PYTHIA simulation was used to 

calculate purity for high-p
T
 region

 

 

Pb=
N bεb

N bεb+N cεc+N LFεLF

N
b 
,
 
N

c 
 − folded POWHEG p

T 
spectrum of b and c-jets  

N
LF 

 = RAW p
T  

spectrum of inclusive jets − N
b  

− N
c  

 
  

ε
b
, ε

c
, ε

LF 
 −  efficiency of SV tagging for b, c and LF-jets for given SL

xy
 and σ

SV
 



  

B jets in p-Pb at √s
NN

= 5.02 TeV: Analysis overview
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1) Jet reconstruction

2) B-Jet candidate selection

3) Corrections on efficiency and purity

● Jet yield was corrected on efficiency of SV tagging 
(estimated with PYTHIA + EPOS)

● Purity of b-jet  was estimated using the following 
method:

– Data-driven template fit method 
– POWHEG + PYTHIA simulation was used to 

calculate purity for high-p
T
 region

– Purities obtained based on different POWHEG 
 settings were compared with the template fit 
results.  

 

 



  

B jets in p-Pb at √s
NN

= 5.02 TeV:
Production cross-section
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● p
T
 spectrum of the b jets was corrected: 

● Jet momentum smearing due to instrumental 
effects and local background fluctuations was 
corrected by unfolding 

● Result cross section shows good agreement 
with the model (POWHEG HVQ)

d N b - jet
primary  

 d pT, jet ch

=
d N b - jet candidates

raw

d pT, jet ch

×
Pb
εb



  

HFe jets in p-Pb at √s
NN

= 5.02 TeV: 
Analysis overview

1) HF electrons selection

● c, b -> semileptonic decay producing e±

● PID selection: TPC dE/dx, EMCal
● p

T, e 
> 4 GeV/c
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HFe jets in p-Pb at √s
NN

= 5.02 TeV:
 Analysis overview

1) HF electrons selection

2) Jets reconstruction

● Charged tracks
● FASTJet anti-k

T 
algorithm

● Jet radius R = 0.3, 0.4, 0.6
● |η

jet
| > 0.9 – R

● pch
T,jet 

> 10 GeV/c
● Jets with reconstructed electrons
● p

T
 of the jets corrected on the mean 

background density
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HFe jets in p-Pb at √s
NN

= 5.02 TeV: 
Analysis overview
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1) HF electrons selection

2) Jets reconstruction

3) Corrections

● Background from photonic e±

● Hadron contamination

● Reconstruction efficiency

 



  

HFe jets in p-Pb at √s
NN

= 5.02 TeV: 
cross-section
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● Measured cross-section shows good agreement 
with the model (POWHEG+PYTHIA8)

● R
pA

 is compatible with unity. No sign of 
suppression 

 



  

Summary
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● Measurement of D0-tagged jets in pp at √s
 
= 7 TeV:

● z∥
ch

  cross-section
● Cross-section of D0 tagged jets production

● Measurement of b – jets in p-Pb at √s
NN

= 5.02 TeV:

● First results in cross-section of B-jets production
 

● Measurement of HFe jets in p-Pb at √s
NN

= 5.02 TeV:

● No sign of jet quenching is observed or  other medium-induced 
modification

 



  

Backup
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B jets in pPb: Physics motivation
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Figure 1. CMS Results  
(pPb, 5.02 TeV, full jets 2018)

pPb collisions: 

● Study cold nuclear matter (CNM) effects 
(nPDF, shadowing, gluon saturation, k

T
-

broadening, energy loss in CNM in the initial 
and final states)

● Study of the possible collective effects

ALICE wants to study b-jets at  lower momenta 
where CNM effects will be more significant  

Was used two independent 
approaches:

● Most displaced Secondary Vertex (SV)
● Track counting algorithm (IP)



  

Dead cone effect
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“Gluonsstrahlung” - process of gluon radiation by quarks (or gluons)
 

θ
“Dead cone”

Heavy
quark

θ2

[θ
2
+(m /E)

2
]
2

Gluonsstrahlung probability

         ~

“Dead cone” effect – gluon radiation from massive quarks is suppressed at angles 
θ < m/E  →  Less E loss inside the medium for heavy quarks expected 

[ Yu.L. Dokshitzer, D.E. Kharzeev - “Heavy Quark Colorimetry of QCD Matter”, 
arXiv:hep-ph/0106202]



  

 - Energy,           - “color charge”,         - transverse momenta  

Probability of gluon emission 

 

dPHQ=
αs CF

π
d ω
ω

kT
2 dkT

2

(kT
2
+ω

2
θ0

2
)

2=
αs C F

π
d ω
ω

θ2 d θ2

(θ
2
+θ0

2
)

2

dP0≃
αs C F

π
d ω
ω

dkT
2

kT
2 =

αs CF
π

d ω
ω

d θ2

θ
2

For light quarks:

For heavy quarks:
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θ0=
M
E

CFω kT

dP0 - Probability to radiate gluon 

Where



  

 - Energy,           - “color charge”,         - transverse momenta  

Probability of gluon emission 

 

dPHQ=
αs CF

π
d ω
ω

kT
2 dkT

2

(kT
2
+ω

2
θ0

2
)

2=
αs C F

π
d ω
ω

θ2 d θ2

(θ
2
+θ0

2
)

2

dP0≃
αs C F

π
d ω
ω

dkT
2

kT
2 =

αs CF
π

d ω
ω

d θ2

θ
2

For light quarks:

For heavy quarks:
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θ0=
M
E

CFω kT

dP0 - Probability to radiate gluon 

Where
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