Origins of Nuclear Structure in QCD

Anthony W. Thomas

ICNFP 2019
Kolympari, Crete : 23rd August 2019
Outline

I. Nuclei from Quarks
 − start from a QCD-inspired model of *hadron* structure
 − develop a quantitative theory of nuclear structure

II. Search for observable effects of the change in hadron structure in-medium
 − EMC effect (including spin): only if questions raised

III. Neutron Stars
 − role of hyperons and insights from GW170817
I. Insights into nuclear structure

– what is the atomic nucleus?

There are two very different extremes….
Quark Structure matters/doesn’t matter

• Nuclear Femtography: the science of mapping the quark and gluon structure of *atomic nuclei* is just beginning

• “Considering quarks is in contrast to our modern understanding of nuclear physics... the basic degrees of freedom of QCD (quarks and gluons) have to be considered only at higher energies. The *energies relevant for nuclear physics are only a few MeV*”
What do we know?

• Since 1970s: Dispersion relations \rightarrow intermediate range NN attraction is a strong Lorentz scalar

• In relativistic treatments (RHF, RBHF, QHD...) this leads to mean scalar field on a nucleon \sim300 to 500 MeV!!

• *This is not small* – up to half the nucleon mass - death of “wrong energy scale” arguments

• Largely cancelled by large vector mean field BUT these have totally different dynamics: ω^0 just shifts energies, σ seriously modifies internal hadron dynamics

• Latter cannot be accurately captured by EFT with N and π
Suggests a different approach: QMC Model

(Guichon, Saito, Tsushima et al., Rodionov et al.
- see Saito et al., Prog. Part. Nucl. Phys. 58 (2007) 1 and
 Prog. Part. Nucl. Phys. 100 (2018) 262-297 for reviews)

• Start with quark model (MIT bag/NJL...) for all hadrons

• Introduce a relativistic Lagrangian with σ, ω and ρ mesons coupling to non-strange quarks

• Hence **only 3 parameters** (4 if σ mass not fixed)

- determine by fitting to:
 ρ_0, E/A and symmetry energy

- same in dense matter & finite nuclei

• Must **solve self-consistently** for the internal structure of baryons in-medium
Quark-Meson Coupling Model (QMC): Role of the Scalar Polarizability of the Nucleon

The response of the nucleon internal structure to the scalar field is of great interest... and importance

\[M^*(r) = M - g_\sigma \sigma(\mathbf{r}) + \frac{d}{2} \left(g_\sigma \sigma(\mathbf{r}) \right)^2 \]

Non-linear dependence through the scalar polarizability
\[d \sim 0.22 \, R \] in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the ONLY place the response of the internal structure of the nucleon enters.
Application to nuclear structure
Derivation of Density Dependent Effective Force

Physical origin of density dependent forces of Skyrme type within the quark meson coupling model

P.A.M. Guichon a,*, H.H. Matevosyan b,c, N. Sandulescu a,d,e, A.W. Thomas b

Nuclear Physics A 772 (2006) 1–19

• Start with classical theory of MIT-bag nucleons with structure modified in medium to give $M_{\text{eff}}(\sigma)$.

• Quantise nucleon motion (non-relativistic), expand in powers of derivatives

• Derive equivalent, local energy density functional:

$$\left\langle H(\vec{r}) \right\rangle = \rho M + \frac{\tau}{2M} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{\text{eff}} + \mathcal{H}_{\text{fin}} + \mathcal{H}_{\text{so}}$$
Derivation of EDF (cont.)

\[\mathcal{H}_0 + \mathcal{H}_3 = \rho^2 \left[\frac{-3G_\rho}{32} + \frac{G_\sigma}{8(1 + d_\rho G_\sigma)^3} - \frac{G_\sigma}{2(1 + d_\rho G_\sigma)} + \frac{3G_\omega}{8} \right] \]

\[+ (\rho_n - \rho_p)^2 \left[\frac{5G_\rho}{32} + \frac{G_\sigma}{8(1 + d_\rho G_\sigma)^3} - \frac{G_\omega}{8} \right], \]

\[\mathcal{H}_{\text{eff}} = \left[\left(\frac{G_\rho}{8m^2_\rho} - \frac{G_\sigma}{2m^2_\sigma} + \frac{G_\omega}{4M^2_N} \right) \rho_n + \left(\frac{G_\rho}{4m^2_\rho} + \frac{G_\sigma}{2M^2_N} \right) \rho_p \right] \tau_n \]

\[+ p \leftrightarrow n, \]

\[\mathcal{H}_{\text{fin}} = \left[\left(\frac{3G_\rho}{32m^2_\rho} - \frac{3G_\sigma}{8m^2_\sigma} + \frac{3G_\omega}{8m^2_\omega} - \frac{G_\sigma}{8M^2_N} \right) \rho_n \right. \]

\[+ \left. \left(\frac{-3G_\rho}{16m^2_\rho} - \frac{G_\sigma}{2m^2_\sigma} + \frac{G_\omega}{2m^2_\omega} - \frac{G_\sigma}{4M^2_N} \right) \rho_p \right] \nabla^2 (\rho_n) + p \leftrightarrow n, \]

\[\mathcal{H}_{\text{SO}} = \nabla \cdot J_n \left[\left(\frac{-3G_\sigma}{8M^2_N} - \frac{3G_\omega(-1 + 2\mu_s)}{8M^2_N} - \frac{3G_\rho(-1 + 2\mu_v)}{32M^2_N} \right) \rho_n \right. \]

\[+ \left. \left(\frac{-G_\sigma}{4M^2_N} + \frac{G_\omega(1 - 2\mu_s)}{4M^2_N} \right) \rho_p \right] + p \leftrightarrow n. \]

Spin-orbit force predicted!

Note the totally new, subtle density dependence
Overview

<table>
<thead>
<tr>
<th>data</th>
<th>rms error %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QMC</td>
</tr>
<tr>
<td>fit nuclei:</td>
<td></td>
</tr>
<tr>
<td>binding energies</td>
<td>0.36</td>
</tr>
<tr>
<td>diffraction radii</td>
<td>1.62</td>
</tr>
<tr>
<td>surface thickness</td>
<td>10.9</td>
</tr>
<tr>
<td>rms radii</td>
<td>0.71</td>
</tr>
<tr>
<td>pairing gap (n)</td>
<td>57.6</td>
</tr>
<tr>
<td>pairing gap (p)</td>
<td>25.3</td>
</tr>
<tr>
<td>ls splitting: proton</td>
<td>15.8</td>
</tr>
<tr>
<td>ls splitting: neutron</td>
<td>20.3</td>
</tr>
<tr>
<td>superheavy nuclei:</td>
<td>0.1</td>
</tr>
<tr>
<td>N=Z nuclei</td>
<td>1.17</td>
</tr>
<tr>
<td>mirror nuclei</td>
<td>1.50</td>
</tr>
<tr>
<td>other</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Stone et al., PRL 116 (2016) 092501
Superheavy Binding: 0.1% accuracy

Stone et al., PRL 116 (2016) 092501
For detailed study of SHE see: arXiv:1901.06064
Overview of 739 even-even nuclei

Martinez et al., arXiv:1811.06628
Systematics of two-neutron separation energy

Martinez et al., arXiv:1811.06628
Giant Monopole Resonance

Martinez et al., arXiv:1811.06628
Summary: Finite Nuclei

• The effective force was *derived* at the quark level *based upon the changing structure of a bound nucleon*

• Has *many less parameters* but reproduces nuclear properties at a level comparable with the best phenomenological Skyrme forces

• Looks like standard nuclear force

• BUT underlying theory also predicts modified internal structure and hence modified
 - DIS structure functions (EMC effect)
 - elastic form factors......
EMC Effect
EMC Effect for Finite Nuclei

(There is also a spin dependent EMC effect - as large as unpolarized)

FIG. 7: The EMC and polarized EMC effect in 11B. The empirical data is from Ref. [31].

FIG. 9: The EMC and polarized EMC effect in 27Al. The empirical data is from Ref. [31].

Approved JLab Experiment

- Effect in ^7Li is slightly suppressed because it is a light nucleus and proton does not carry all the spin (simple WF: $P_p = 13/15$ & $P_n = 2/15$)

- Experiment now approved at JLab [E12-14-001] to measure spin structure functions of ^7Li (GFMC: $P_p = 0.86$ & $P_n = 0.04$)

Spin EMC measurement is critical as the proposed explanation in terms of SRC through the tensor force gives NO spin EMC effect (arXiv:1809.06622)
Spin-EMC Effect is a crucial test

- Tensor correlations leading to high momentum components in nuclear wave function have been proposed as an alternate explanation of the EMC effect.

- The tensor force scatters 3S_1 pairs almost entirely into 3D_1 at high momentum (~84% at $p > 400$ MeV/c).

- Nucleons in SRC are depolarized – simple Clebsch-Gordan coefficients - and cannot contribute to spin-EMC effect.

- That is SRC predicts essentially NO spin-EMC effect.
Isovector EMC Effect

• New realization concerning EMC effect in this approach:
 – isovector force in nucleus (like Fe) with N≠Z effects ALL u and d quarks in the nucleus
 – subtracting structure functions of extra neutrons is not enough
 – there is a shift of momentum from all u to all d quarks

• Sign and magnitude of this effect exhibits little model dependence

Parity-Violating Deep Inelastic Scattering and the Flavor Dependence of the EMC Effect

I. C. Cloët, W. Bentz, and A. W. Thomas

Parity violating EMC will test this at JLab 12 GeV
Gravity Waves from Neutron Star Mergers
GW170817: Measurements of neutron star radii and equation of state

The LIGO Scientific Collaboration and The Virgo Collaboration
(compiled 30 May 2018)

On August 17, 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and

arXiv:1805.11581
Recent Study Motivated by GW170817

- Includes isovector scalar meson

Species Fractions: in β-equilibrium

Tidal deformability

- Band deduced by LIGO-Virgo analysis of GW170817

\[Q_{ij} = -\lambda(M) E_{ij} \]

I. Summary

• Intermediate range NN attraction is STRONG Lorentz scalar

• This modifies the intrinsic structure of the bound nucleon
 – profound change in shell model:
 what occupies shell model states are NOT free nucleons

• Scalar polarizability is a natural source of three-body forces (NNN, HNN, HHN…)
 – clear physical interpretation

• Naturally generates effective HN and HNN forces with no new parameters and predicts heavy neutron stars
II. Summary

- Initial systematic study of finite nuclei very promising
 - Binding energies typically within 0.3% across periodic table
 - Super-heavies (Z > 100) especially good

- Need empirical confirmation:
 - Response Functions & Coulomb sum rule (soon?)
 - Isovector EMC effect; spin EMC (not too long?)

- Yields neutron stars at 2M\(_{\odot}\) with hyperons
 - Consistent with the tidal deformability deduced from GW170817
Special Mentions......
Latest papers

• **Review:**
 Guichon et al., PPNP 100 (2018) 262

• **SHE:**
 Stone et al., arXiv: 1901.06064

• **Systematic application to finite nuclei:**

• **Neutron Stars**
 Stone et al., arXiv:1906.11100
Key papers on QMC

- **Many-body forces:**

- **Built on earlier work on QMC: e.g.**

- **Major review of applications of QMC to many nuclear systems:**
References to: Covariant Version of QMC

• Basic Model: (Covariant, chiral, confining version of NJL)

• Applications to DIS:

• Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302

• Applications to neutron stars – including SQM:

Binary Tidal Deformability

- Bound from De, Finstad, Lattimer et al. (2018)

Modified Electromagnetic Form Factors In-Medium
Response Function

RPA correlations repulsive

Significant reduction in Response Function from the modification of bound-nucleon

Cloët, Bentz & Thomas (PRL 116 (2016) 032701)
Comparison with Unmodified Nucleon & Data

\[S_L(|q|) = \int_{\omega^+} d\omega \frac{R_L(\omega, |q|)}{Z G_{Ep}(Q^2) + N G_{En}(Q^2)} |q| \quad [\text{GeV}] \]

Data: Morgenstern & Meziani
Calculations: Cloët, Bentz & Thomas (PRL 116 (2016) 032701)