SuperKEKB as test and demonstrator of future e⁺e⁻ circular colliders

Philip Bambade LAL-Orsay

Acknowledgements: S. Di Carlo, C.-G. Pang (LAL LumiBelle2 project)

Hiroyuki Nakayama (Belle II), Sadaharu Uehara (Belle II ZDLM) + Belle II / BEAST team

Y. Funakoshi, K. Ohmi, Y. Ohnishi, D. Zhou (KEK ACCEL Department)

R. Yang (CERN, CLIC & SuperKEKB)

Material: 1st SuperKEKB Beam Dynamics Mini-Workshop, 17/7 2019: https://kds.kek.jp/indico/event/31793/

Exploring the luminosity frontier with SuperKEKB

KEKB 2×10^{34} /cm²/s

SuperKEKB 8×10^{35} /cm²/s

- Future e⁺e⁻ circular colliders (FCCee, CEPC) use concepts tried for 1st time at SuperKEKB, e.g. nanobeam collision scheme

SuperKEKB & Belle-II projects

1) Phase 1 : February \rightarrow June, 2016

- single beam commissioning, vacuum scrubbing
- no luminosity (no final focus), no Belle II

2) Phase 2 : February → July 2018

- colliding beam commissioning, Belle II w/o vertex detector
- first collisions + pilot run (0.5 fb⁻¹)
- 3) Phase 3.1: March 27 \rightarrow July 1, 2019
 - Physics run with full detector (6.5 fb⁻¹), resume in October-December

Schedule

Belle-II @ SuperKEKB physics motivation

Discover new physics via precision search for deviations from SM predictions induced by new particles appearing in higher order quantum corrections

- Precision measurements of CKM matrix elements
- Rare / forbidden B, D, τ decays
- Dark sector searches

•

specification: \times 40 peak luminosity of KEKB \rightarrow 50 ab⁻¹

1st B-B like event during 1st physics run

Luminosity projection

Talks on Belle II detector & physics at ICNFC 2019

- 1. P. Goldenzweig, "First look at CKM parameters from early Belle II data"
- 2. I. Komarov, "Dark sector physics with Belle II: first results and prospects"
- 3. L. Vitale, "Belle II experiment: status and prospects"

KEKB ←→ SuperKEKB parameters

		KEKB		SuperKEKB		
		LER (e^+)	$\mathrm{HER}\;(e^-)$	LER (e^+)	HER (e^-)	Units
Beam energy	E	3.5	8.0	4.0	7.007	GeV
Circumference	\boldsymbol{C}	3016.262		3016.315		m
Half crossing angle	θ_{x}	0(11(*))		41.5		mrad
Piwinski angle	ϕ_{piw}	0	0	24.6	19.3	rad
Horizontal emittance	\mathcal{E}_{χ}	18	24	3.2(1.9)	4.6(4.4)	nm
Vertical emittance	$\boldsymbol{\mathcal{E}_{y}}$	150	150	8.64	12.9	pm
Coupling		0.83	0.62	0.27	0.28	%
Beta function at IP	β_x^*/β_y^*	1200/5.9	1200/5.9	32/0.27	25/0.30	mm
Horizontal beam size	$\sigma_{\!\scriptscriptstyle \chi}^*$	147	170	10.1	10.7	μm
Vertical beam size	$\sigma_{\scriptscriptstyle m y}^*$	940	940	48	62	nm
Horizontal betatron tune	v_x	45.506	44.511	44.530	45.530	
Vertical betatron tune	v_y	43.561	41.585	46.570	43.570	
Momentum compaction	α_p	3.3	3.4	3.20	4.55	10^{-4}
Energy spread	$\sigma_{\!arepsilon}$	7.3	6.7	7.92(7.53)	6.37(6.30)	10^{-4}
Beam current	I	1.64	1.19	3.60	2.60	Α
Number of bunches	n_b	1584		2500		
Particle/bunch	N	6.47	4.72	9.04	6.53	10 ¹⁰
Energy loss	U_0	1.64	3.48	1.76	2.43	MeV
Long. damping time	$ au_z$	21.5	23.2	22.8	29.0	msec
RF frequency	f_{RF}	508.9		508.9		MHz
Total cavity voltage	V_c	8.0	13.0	9.4	15.0	MV
Total beam power	P_b	~ 3	~ 4	8.3	7.5	MW
Synchrotron tune	v_s	-0.0246	-0.0209	-0.0245	-0.0280	
Bunch length	$\sigma_{\bar{i}}$	~ 7	~7	6.0(4.7)	5.0(4.9)	mm
beam-beam parameters	ξ_x/ξ_y	0.127/0.129	0.102/0.090	0.0028/0.088	0.0012/0.081	
Luminosity	L	2.108×10^{34}		8 × 10 ³⁵		$cm^{-2}s$
Integrated luminosity	$\int L$	1.041		50		ab^{-1}

× 1/20 $β_y$ $σ_y ≈ 50-60 \text{ nm}$ (similar as ILC/ATF2)

× 2-3 beam currents

similar beam-beam strength (tune-shift)

→ × 40 peak luminosity

Nanobeam collision scheme

opportunities

- \checkmark very small β_y avoiding "hour-glass" limitation (effective bunch length ≈ depth of field of the optics)
- ✓ collide more charge @ tiny vertical beam size with similar beam-beam tune-shift strength parameter

challenges
@ SuperKEKB

- 1. IP tuning to cancel optical aberrations essential to maintain tiny beam sizes (linear collider like?)
- 2. control beam-beam tune-shift with more complex beam-beam dynamics + IP optics aberrations
- 3. continuously injected intense beams & strong IP optical magnification → backgrounds (linear collider like ?)

$$\xi_{xy\pm} = \frac{r_e}{2\pi\gamma_{\pm}} \frac{N_{\mp}\beta_{xy}^*}{\sigma_{xy}^*(\sigma_x^* + \sigma_y^*)} R_{\xi_{xy}}$$

SuperKEKB commissioning history: Phase 2 (March => July 2018)

- Belle II detector rolled in and first physics events measured
- Colliding beam commissioning, no vertex detector
- Progressively reducing β_y^* from 8 mm to 3 mm (design value is 0.3 mm)
- Smallest beam size (at low intensity) $\sigma_{v}^{*} \approx 0.4 \ \mu m$
- Maximum luminosity: $L \approx 0.5 \times 10^{34} cm^{-2} s^{-1}$

SuperKEKB commissioning history: Phase 3 (March => June 2019)

- Belle II vertex detector installed
- Background decreased by factor 10 with improved collimation
- Lost one month due to linac fire accident (unrelated to SuperKEKB)
- Maintained stable operation with continuous injection and currents at $I \approx 500 \ mA$
- Belle II data taking most of the period: accumulated $\sim 6.5~fb^{-1}$ for early Belle II physics analyses
- Squeezed beta β_{ν}^* to 2 mm
- Luminosity milestone: $L = 1.0 \times 10^{34} cm^{-2} s^{-1}$

Good progress squeezing σ_v with $\beta_v < \sigma_z$

 \rightarrow shows "hour-glass" effect mitigated in nanobeam scheme \rightarrow smallest β_v achieved in storage ring

Reduced bunch overlap in nanobeam scheme also visible on Z distribution of reconstructed track vertices

Ordinary collision KEKB

Z vertex distribution

Nano-Beam (SuperKEKB)

Z vertex distribution

Belle II case 2018 data

IP optical aberrations blowing up the beam size are unavoidable → reliable measurement for correction only at the IP...

 $M(s_2|s_1) = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}}(\cos\psi + \alpha_1\sin\psi) & \sqrt{\beta_1\beta_2}\sin\psi \\ -\frac{1+\alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\sin\psi + \frac{\alpha_1-\alpha_2}{\sqrt{\beta_1\beta_2}}\cos\psi & \sqrt{\frac{\beta_1}{\beta_2}}(\cos\psi - \alpha_2\sin\psi) \end{pmatrix}$

 $\Delta \psi = \int \frac{ds}{\beta(s)} \approx \pi/2 \text{ except near a waist}$

Propagate IP aberration in low- β insertion \rightarrow no visibility (except, possibly, at a secondary waist)

Must tune directly at IP (luminosity...)

LumiBelle2

Luminosity monitor that measures recoiling electrons, positrons, and photons from forward radiative Bhabha scattering

FEATURES:

- Single crystal CVD diamond sensors
- $4 \times 4 \times 0.5/0.14 \ mm^3$
- Fast amplifiers;
- Digital electronics.
- 4 of 6 channels online

GOALS:

- 1. Train integrated luminosity): 1% precision at 1kHz;
- 2. Bunch-by-bunch integrated luminosity): 1% precision at 1 Hz;
- 3. Cover SuperKEKB large luminosity range with high SNR : $L=10^{30}-10^{36}cm^{-2}s^{-1}$

Zero degree radiative Bhabha scattering

- ullet Complementary reaction for e^+ spectator
- Large cross section $\sigma \approx 250 \ mbarn$ for $E(\gamma) > 1\% \ E(beam)$
- $^{\bullet}$ LumiBelle2 measures rates dN/dt of e^+ in the positron ring and γ in the electron ring

ABSOLUTE LUMINOSITY

 $L = \frac{1}{\sigma} \frac{dN}{dt}$ with precision + acceptance varies over time

RELATIVE LUMINOSITY

Detectors position

POSITRON RING (measure e+)

- Optimal position found at 11 m downstream of IP using SAD
- Bhabha positrons are over-bent and hit the vacuum chamber
- Special beam pipe with window + Tungsten radiator

ELECTRON RING (measure γ)

- Originally position at 30 m (2018)
- I designed an original simulation to track photons inside the vacuum chamber. Photons generated with GUINEA PIG ++
- Optimal position found at 28 m
- New position has rate ~ 10 times higher (2019);

Fast monitoring with diamonds

High charge carrier mobility

→ fast signal formation

Wide band-gap (5.5 eV)

→ good radiation tolerance

SuperKEKB collision period = 4 ns

- To monitor bunch-by-bunch luminosity we need a pulse width smaller than 4 ns
- 140 μm thick diamond + fast current amplifier provides 2 ns FWHM

Signal processing algorithms

- 2ns FWHM signals are sampled every 1 ns
- Synchronization to RF clock -> continuous monitoring, averaging at 1 kHz
- Luminosity proportional to amplitude of signal peaks
 - 1. ADC is AC-coupled -> difference between peak and baseline recorded
 - 2. Raw sum of signal peaks is also recorded

ZDLM (Zero Degree Luminosity Monitor)

S. Uehara (KEK, IPNS/Belle II)

Improved version of KEKB fast luminosity monitor

used as benchmark for many studies ↔ LumiBelle2

Shared supports and many activities for optimisation and evaluation

Different, complementary techniques (sensors, electronics and DAQ,...)

First collisions (luminosity): 25 April, 2018

- Vertical and phase (longitudinal) scans were performed to find the optimal position of the beams
- Zero Degree Luminosity Monitor (ZDLM), present since KEKB, used as benchmark
- The 4 LumiBelle2 channels and the ZDLM work well and are in agreement
- Successfully measured and provided the luminosity on-line from the first collision up to this date

Correlation with other monitors: ZDLM and ECL

- The ZDLM is a relative luminosity monitor located close to the LumiBelle2 diamonds.
- The Electromagnetic Calorimeter (ECL) is part of the Belle II detector and can measure the absolute luminosity.
- We observe good correlation on a day-by-day basis or shorter time scales;
- Long term variations in slopes (sensitivities) due to changes in beam conditions and setups: gains, position of the sensors, thresholds, etc.

Background study

SIMULATION FEATURES:

- Bremsstrahlung, Coulomb, and Touschek scattering included
- Use of SAD for tracking and Geant4 for particle detection
- $^{\circ}$ Detailed simulation of pressure profile and chemical composition of vacuum gas ($Z_{eff} \approx 4.2-4.5$) from previous study (J.Carter, M.Ady)

HER (e-ring):

- Dominant rate from Bremsstrahlung photons
- $^{\circ}$ Electron rates from Bremsstrahlung, Coulomb, and Touschek scattering are negligible($\ll 1Hz$)

LER (e+ ring):

- Dominant rate from Bremsstrahlung positrons
- \circ ~10% of the rate from Touschek scattering
- Positron rate from Coulomb scattering is negligible

Simulated vacuum profile in IR

Scattering position of Bremsstrahlung 40 particles detected in LumiBelle2 / LER 20

Measurement vs Simulation

Bremsstrahlung

Coulomb

Fast & slow beam position variations at IP require feedback corrections

Beam-beam deflection for fast vertical motion

Luminosity feedback by "dithering" for slower horizontal motion

$$L(t) = \frac{f_{rev} N_1 N_2}{4\pi\sigma_x \sigma_y} e^{-(\frac{[q + psin(2\pi ft)]^2}{4})}$$

1st dithering feedback test in Phase 2

- The e- beam was artificially given an offset,
 while the e+ beam was dithered
- The algorithm tries to minimize the Magnitude [V] of the luminosity FT calculated at the driving frequency f_0 to bring the beams back to the optimal position (unwanted offset o=0)
- These parameters are then sent to the magnet control system via EPICS to create a bump in the e- beam
- After first two attempts, optimization of the algorithm parameters, in the third one the feedback was able to smoothly minimize the offset

Further tests in Phase 2 & 3 have exhibited some coupling effects between X and Y feedback systems → to be solved for operation at design parameters

Beam size estimation with vertical offset scans

 σ_y^* estimation slightly biased due to non constant beam-beam blow-up during the scan

beam-beam simulation (S. Di Carlo & D. Zhou) Blow-up

1.3

1.25

1.25

1.15

1.15

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

Sensitive luminosity monitor important to correct optical aberrations in vertical IP beam size

Phase 2 β_y^* = 4 mm

very low intensity essential to avoid beam-beam effects: (1) confusion from blow-up, (2) biased beam size estimates

Sensitive luminosity monitor important to correct optical aberrations in vertical IP beam size

very low intensity essential to avoid beam-beam effects: (1) confusion from blow-up, (2) biased beam size estimates

Vertical offset scan

Y. Funakoshi (KEK), 1st SuperKEKB Beam Dynamics Mini Workshop, 17/7/2019

Phase 3 $\beta_y^* = 2 \text{ mm}$

 $\Sigma y^*/\text{Sqrt}[2]$ (XRM) =Sqrt[0.3^2+0.25^2]/Sqrt[2]= 0.276 μ m

XRM & beam-beam scan beam size match → IP has no big x-y coupling

Bunch-by-bunch luminosities, folded vertical bunch sizes and relative offsets

8% spread mainly depends on bunch current differences

Bunch-by-bunch luminosity precision: 1-2% at 1Hz

dominated by spread in bunch-by-bunch currents

8nm RMS spread in bunch-bybunch vertical offsets (2.3% of average bunch size)

2% RMS spread in bunch-bybunch vertical beam sizes

Bunch-by-bunch luminosities at high current: enhanced values for 1st bunches in the train → transient beam loading effect, other ???

Present beam-beam performance

Y. Ohnishi (KEK), 1st SuperKEKB Beam Dynamics Mini Workshop, 17/7/2019

Specific Luminosity and Beam-Beam Parameter

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{\pm} \xi_{y\pm}}{\beta_{y\pm}^*} \right) \left(\frac{R_L}{R_{\xi_y}} \right)$$

- Luminosity improves squeezing β_y
- Beam-beam parameter remains constant ~ 0.025

 \rightarrow need $\xi_{_{V}}\sim$ 0.08 @ 1.4 mA \iff $\xi_{_{V}}\sim$ 0.04 @ 0.7 mA

$$\xi_{xy\pm} = \frac{r_e}{2\pi\gamma_{\pm}} \frac{N_{\mp}\beta_{xy}^*}{\sigma_{xy}^*(\sigma_x^* + \sigma_y^*)} R_{\xi_{xy}} \rightarrow \xi_y \pm \sim \sqrt{\frac{\beta_y}{\varepsilon_y \mp \varepsilon_y}}$$

Example of simulated effect of high-order / chromatic optical aberrations on beam-beam performance

based on K. Ohmi (KEK), 1st SuperKEKB Beam Dynamics Mini Workshop, 17/7/2019

Magnitude of aberrations needed to explain beam-beam blow-up seems very / too large...

- Realism of simulation to quantitatively fully represent the beam-beam interaction and its interplay with optical aberrations, including the full non-linear ring lattice?
- Other effects specific to nanobeam scheme (large crossing angle) → "crab-waist" solution?

Is crab-waist the solution?

D. Zhou (KEK), 1st SuperKEKB Beam Dynamics Mini Workshop, 17/7/2019

Investigation of beam-beam effects in the nano-beam scheme → central topic at SuperKEKB

Conclusion and prospects

- SuperKEKB is the only electron-positron collider operating with new concepts to reach very high luminosity
- Initial commissioning and operation shows good progress, also considerable challenges
 - tuning of many optical aberrations at the IP
 - beam-beam effects/limits and interplay with optical aberrations
 - beam induced background and trade-off wrt luminosity / β*
 - **>**
- Essential instrumentation to directly probe the beam size and luminosity performance at the IP
- Application to future high energy colliders: FCC-ee / CEPC, also ILC/CLIC...
 - ✓ unique training ground to prepare, test, validate future designs...

Backup slides