CMS results on Higgs boson properties

Rainer Mankel (DESY) for the CMS Collaboration

ICNFP 2019 Conference 21-29 August 2019

- Introduction
- > Bosonic couplings: $H \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$
- ≻ Fermionic couplings: $H \to \tau \tau$, $ttH(\to b\bar{b})$, $H \to c\bar{c}$
- Couplings summary
- > *HH* production and tri-linear Higgs coupling
- > Summary

Higgs boson: discovery and exploration

- 2012: Observation of the Higgs boson by ATLAS and CMS
 - initially in di-boson decay modes
- 2016: Run 1 couplings combination (ATLAS+CMS)
 - ➔ properties found to be SM-like within current precision
- 2017-18: Discovery of 3rd generation Yukawa couplings
 - via $H \rightarrow \tau \bar{\tau}$ and $H \rightarrow b \bar{b}$ decays, ttH production

• Now: precision measurements with full Run 2 data

Higgs boson production and decay

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

$H \rightarrow 4\ell$ in full Run 2

Excellent mass resolution, low background

- Selection according to kinematic discriminants
 - ➔ distinction between production processes
- $Z \rightarrow 4\ell$ signal serves as standard candle
 - → control momentum scale and resolution
- In most cases, one Z boson is on-shell

$H \rightarrow 4\ell$ vs production process

CMS Preliminary

ggH,bbH 0.97^{+0.09}_{-0.09}(stat.) ^{+0.09}_{-0.07}(syst.)

VBF

0.64^{+0.45}_{-0.36}(stat.) ^{+0.16}_{-0.09}(syst.)

VH 1.15^{+0.89}_{-0.72}(stat.) ^{+0.26}_{-0.16}(syst.)

tīH,tH 0.13^{+0.92}(stat.) ^{+0.11}(syst.)

Extract signal strength by unbinned fit of 2D likelihood function

 $\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{bkg}^{kin})$

- Good agreement with SM \rightarrow prediction
- In particular, no tension \rightarrow between fermion- and vector boson-induced production modes

Simplified Template cross sections (STXS)

• A standardized "binning" mutually agreed on by experiments and theorists

 $p_T^H \ 0$

10

- ideal basis for testing theoretical calculations
- allows experiments to keep using multivariate methods (BDT, DNN, ...)
- evolving schema, with granularity matched to currently available statistics
- In the initial round of analyses, only STXS Stage 0 could be addressed
 - bins correspond to production mechanisms
- The full Run 2 analysis is able to measure STXS Stage 1.1 schema
 - → finer binning, in p_T^H , m_{jj} , N_{jet}

(VH \rightarrow leptons and EW qqH not shown)

Simplified Template cross sections (cont'd)

$H \rightarrow 4\ell$ fiducial cross sections

- Phase space selection minimizes need for extrapolation \rightarrow small theoretical uncertainties
- → Measure large selection of distributions and compare with various model predictions

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

- Very clean final state topology
- Classify events targeting different production modes to improve sensitivity
- Data-driven background modeling with analytic functions
 - discrete profiling method
- Combination of 2016 + 2017 data
- ➔ Measured signal strength:
 - gluon fusion: $\mu = 1.15^{+0.15}_{-0.15}$
 - vector boson fusion: $\mu = 0.8^{+0.4}_{-0.3}$

$H \rightarrow \gamma \gamma$: Simplified template cross sections

- → Very adequate mapping between event categories and STXS stage 1 processes
- Some STXS bins had to be merged due to limited statistics (7-parameter fit not shown)
- → Everything in accord with Standard Model expectations

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

$H \rightarrow \tau \tau$ and the Higgs- τ Yukawa coupling

- After discovery of $H \rightarrow \tau \tau$ with Run 1 + 2016 data, analysis has been extended to 2017 dataset (\rightarrow 77.4 fb⁻¹)
- Improvements:
 - multi-class neural network (2 signal + several BG categories)
 - 90% of backgrounds determined with data-driven methods

CMS

Preliminarv

0.5

0

- τ embedding
- fake factor method
- ➔ Signal clearly visible
- Strength in agreement with SM expectation
 - significance:
 4.7 σ (6.6 σ exp.)

CMS PAS HIG-18-032

- Split into 2 production mode groups
 - gg + bbH
 - VBF + V(qq)H
 - correlation ~ -0.44
- Profile κ_F and κ_V coupling modifiers
 - treat WW(eµ) and ttH, V(ℓℓ)H as signal processes
- ➔ Good agreement with SM

$H \rightarrow \tau \tau$: Simplified template cross sections

• In the long term, STXS measurements from various Higgs channels will be combined

production

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

ttH production with $H \rightarrow b\overline{b}$

Direct access to top quark Yukawa coupling

CMS PAS HIG-18-030

- Analysis of all $t\bar{t}$ decay topologies: single/double lepton (SL/DL), fully hadronic (FH); 2016+2017 data
- Complex multi-jet event structure, ≥ 4 b-tags
- Refined multi-variate methods for signal/background discrimination: matrix element, ANN, BDT

ttH production with $H \rightarrow b\overline{b}$ (cont'd)

CMS PAS HIG-18-030

- ➔ Good agreement between 2016 and 2017 data
- → Combined signal strength: $\mu = 1.15^{+0.32}_{-0.29}$ → good agreement with SM expectation
- → Combined significance: 3.9 σ (3.5 σ exp.) → evidence for *ttH* production from $H \rightarrow b\bar{b}$ channel alone

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

$H \rightarrow c \overline{c}$

Based on 2016 data set

- Crucial to measure Yukawa coupling to second generation quarks
- BR($H \rightarrow c\bar{c}$) ~ 20% of BR($H \rightarrow b\bar{b}$)
 - very challenging in view of backgrounds
 - new: $H \rightarrow b\overline{b}$ is a background as well!
- Focus on VH production mode
 - → easy triggering, more manageable backgrounds
 - $V = Z(\nu \bar{\nu}), W(\ell \bar{\nu}), Z(\ell \ell)$ channels
- Two approaches to explore $H \rightarrow c\bar{c}$ decay topology
 - resolved (2 jets R=0.4) and merged (one large jet R=1.5)
- Advanced charm tagging techniques applied
 - confronting both heavy (b) and light flavor (udsg) backgrounds simultaneously

CMS PAS HIG-18-031

Page 22

$H \rightarrow c\overline{c}$ (cont'd)

- Charm tagging based on deep neural networks (DNN)
 - calibration with various control data sets
- Signal extraction by simultaneous fit to signal and control regions
 - analysis variables
 - BDT discriminant (resolved)
 - Higgs candidate mass (merged)
- Validated by measuring $VZ(\rightarrow c\bar{c})$ process
- For the overall result, combine resolved ($p_T^V < 300 \text{ GeV}$) and merged ($p_T^V > 300 \text{ GeV}$)

 $H \rightarrow c\overline{c}$ (cont'd)

→ Combined upper limit relative to SM expectation: $\mu < 70 \text{ obs.}(37 \text{ exp.})$ at 95% CL

- → Most sensitive direct measurement to date
- A long way ahead to achieve SM sensitivity. Next step: full Run 2 analysis

Higgs couplings -Run 2 and beyond

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

Higgs coupling measurements

CMS

 κ_7

 κ_W

ĸ

 $|\kappa_{\tau}|$

 $\kappa_{\rm b}$

 $\kappa_{\rm u}$

-2

_1

Coupling modifiers are presented at the level of the 2016 data

- ggH and $H \rightarrow \gamma\gamma$ loop processes resolved
- → results are in line with SM
- → precision in 10-30% range, apart from κ_{μ}
- stay tuned for full Run 2 result
- Projections have been made for full HL-LHC period (3000 fb⁻¹)
 - → precision improves down to 2-5% range (apart from κ_{μ})
 - dominated by signal theory in S1 case (κ_{μ} dominated by statistics)

brocuction

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

HH production

Phys. Rev. Lett. 122, 121803 (2019)

100 200

95% CL on μ_{HH}

20 30

6

10

HH production: tri-linear Higgs coupling

- Result can be used to constrain the tri-linear Higgs coupling modifier, $k_{\lambda} = \lambda_{HHH} / \lambda_{SM}$
- With SM parameters, the absolute size of both diagrams is relatively similar, and interference is close to destructive
 - in general up to two solutions for k_{λ}
 - shape of m_{HH} spectrum depends strongly on k_{λ}
 - allows distinction between the two cases
- → Result (at 95% CL):
 - $-11.8 < k_{\lambda} < 18.8 \ obs. (-7.1 < k_{\lambda} < 13.6 \ exp.)$
- ➔ Need much more data to reach SM regime

 $y_{t} \lambda_{HHH} - H$

Η

g 7000

g 7000

HH production: outlook for HL-LHC

 Projections have been made for the whole run of the HL-LHC, assuming 3000 fb⁻¹

95% CL limit on $\sigma_{\rm HH} / \sigma_{\rm HH}^{\rm SM}$

Stat. + syst.

2.1

1.4

3.5

1.1

6.6

0.77

Stat. only

1.6

1.3

3.3

1.1

6.5

0.71

➔ total expected significance	(five decay modes): 2.6 σ
-------------------------------	----------------------------------

1.2

1.6

0.59 1.8

0.37

2.8

Significance

Stat. + syst. Stat. only

0.95

1.4

0.56

1.8

0.37

2.6

→	Tri-linear	Hiaas	couplina	can b	e const	trained	at the	leve

• $-0.18 < k_{\lambda} < 3.6$ at 95% CL

Channel

bbbb

 $bb\tau\tau$

 $bb\gamma\gamma$

bbWW($\ell \nu \ell \nu$)

 $bbZZ(\ell\ell\ell\ell)$

Combination

→ Very challenging analysis, but with further refinement of methodology and combination of all possible channels and across experiments, even higher sensitivity can be expected

CMS PAS FTR-18-019

- Legacy analyses of LHC Run 2 data are in full swing
 - many studies already extended to 2016+2017 or full Run 2 data. Many methodical improvements
 - the final word from Run 2 (combination of all data and analysis channels) is yet to come
- Seven years after its discovery, our picture of the Higgs boson has become much more detailed
 - all accessible 3rd generation Yukawa couplings discovered
 - most couplings measured with precision at the 10-30% level
 - differential measurements of production modes became standard \rightarrow simplified template cross sections
 - up to now, Standard Model has prevailed. But still much room for New Physics in the Higgs sector
- In many places, we are still severely limited by experimental statistics
 - Run 3 and ultimately HL-LHC will extend our precision enormously → powerful check for anomalies
 - hope to reach out even for Higgs self-coupling

→ Exciting experimental program ahead!

Backup

CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

 $H \rightarrow 4\ell$ STXS

 ∞

0

 $\mathbf{25}$

 $p_T^{Hjj} \, \, _0 \, \, ^{\simeq ext{2-jet}} \, 25 \, \, ^{\gtrsim ext{3-jet}} \, \infty$

 ∞

 ∞

0-jet

1-jet \geq 2-jet

0-jet

1-jet \geq 2-jet

0-jet

CM.

1-jet \geq 2-jet

Requirements for the ${ m H} ightarrow 4\ell$ fiducial phase space				
Lepton kinematics and isolation				
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20 \mathrm{GeV}$			
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \mathrm{GeV}$			
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m ~GeV}$			
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$			
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$			
Event topology				
Existence of at least two same-flavor OS lepton pairs, where leptons	satisfy criteria above			
Inv. mass of the Z_1 candidate	$40{ m GeV} < m_{Z_1} < 120{ m GeV}$			
Inv. mass of the Z_2 candidate	$12 { m GeV} < m_{Z_2} < 120 { m GeV}$			
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$			
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$			
Inv. mass of the selected four leptons	$105{ m GeV} < m_{4\ell} < 140{ m GeV}$			

 $H \rightarrow \gamma \gamma$

Particle level definition of each ggH stage 1 bin

Region	Definition	Fraction	Cross section (pb)
0J	Exactly zero jets, any $p_{\rm T}^H$	60.0%	26.49
1J low	Exactly one jet, $p_{\rm T}^H < 60 {\rm GeV}$	15.4%	6.79
1J med	Exactly one jet, 60 GeV $< p_{\rm T}^H < 120$ GeV	10.4%	4.61
1J high	Exactly one jet, 120 GeV $< p_{\rm T}^H < 200$ GeV	1.7%	0.76
1J BSM	Exactly one jet, $p_{\rm T}^H > 200 {\rm GeV}$	0.4%	0.16
2J low	\geq two jets, $p_{\rm T}^H < 60 { m GeV}$	2.9%	1.26
2J med	\geq two jets, 60 GeV $< p_{ m T}^{H} <$ 120 GeV	4.5%	2.00
2J high	\geq two jets, 120 GeV $< p_{\mathrm{T}}^{H} <$ 200 GeV	2.3%	1.00
2J BSM	\geq two jets, $p_{\rm T}^H > 200 { m GeV}$	1.0%	0.43
VBF-like 2J	\geq two jets, p_{T}^{H} < 200 GeV, $ \Delta \eta $ > 2.8,	0.6%	0.27
	$m_{jj} > 400~{ m GeV}$, $p_{ m T}^{Hjj} < 25~{ m GeV}$	0.070	0.27
VBE like 21	\geq two jets, $p_{\rm T}^H < 200$ GeV, $ \Delta \eta > 2.8$,	0.9%	0.38
v DI-like SJ	$m_{jj} > 400~{ m GeV}$, $p_{ m T}^{Hjj} > 25~{ m GeV}$	0.970	0.50

 $H \rightarrow \tau \tau$ Categories

	Classes/Categories per final state					
Process	еµ	$e au_{ m h}$	$\mu au_{ m h}$	$ au_{ m h} au_{ m h}$		
$gg \to H$	ggH (0.20)	ggH (0.23)	ggH (0.27)	ggH (0.54)		
VBF	qqH (0.74)	qqH (0.72)	qqH (0.72)	qqH (0.57)		
$Z\to\tau\tau$	ztt (0.52)	ztt (0.66)	ztt (0.63)	ztt (0.62)		
QCD	qcd (0.45)	qcd (0.21)	qcd (0.17)	qcd (0.48)		
tī	tt (0.55)	tt (0.79)	tt (0.75)			
$Z \to \ell \ell$	mi = 2 (0.24)	zll (0.55)	zll (0.53)			
W+jets	$\operatorname{MISC}\left(0.24\right)$	wj (0.43)	wj (0.51)	misc (0.45)		
Diboson	db (0.46)	$m_{1}^{2} = (0, 21)$	m = 200000000000000000000000000000000000			
Single t	st (0.30)	$\operatorname{misc}\left(0.21\right)$	$\operatorname{misc}\left(0.20\right)$			

Embedding

arxiv:1903.01216

Fake factor method

- Modeling of background due to jets being misidentified as hadronic *τ* lepton decays
- Estimated from control regions with loosened selection, applying an appropriate weight ("fake factor")
- $F_F(p_T, decay mode, N_{jet})$

STXS schema and analysis categories

ttH

$H \rightarrow c \overline{c}$

Candidate event display

$H \rightarrow c\overline{c}$ (cont'd)

CCMS Provide conflictment

Resolved-jet and merged-jet analyses and their combination

95% CL exclusion limit							
	resolved-jet merged-jet			combination			
	$(p_{\rm T}({\rm V}) < 300 {\rm GeV})$	$(p_{\mathrm{T}}(\mathrm{V}) \geq 300 \mathrm{GeV})$	0L	1L	2L	All channels	
expected	45^{+18}_{-13}	73^{+34}_{-22}	79^{+32}_{-22}	72^{+31}_{-21}	57^{+25}_{-17}	37^{+16}_{-11}	
observed	86	75	83	110	93	70	

DESY. | CMS results on Higgs boson properties | Rainer Mankel (DESY), 24-August-2019

HH projec	tion			
Cross sections a	and projected up	per limits by ch	h <mark>annel (based</mark> d	on Delphes)

Channel	Significance		95% CL limit on $\sigma_{\rm HH}/\sigma_{\rm HH}^{\rm SM}$		
Chamilei	Stat. + syst.	Stat. only	Stat. + syst.	Stat. only	
bbbb	0.95	1.2	2.1	1.6	
bb au au	1.4	1.6	1.4	1.3	
$bbWW(\ell \nu \ell \nu)$	0.56	0.59	3.5	3.3	
$bb\gamma\gamma$	1.8	1.8	1.1	1.1	
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5	
Combination	2.6	2.8	0.77	0.71	

Coupling projections: scenarios

- "Run 2 systematic uncertainties" scenario (S1): All systematic uncertainties are kept constant with integrated luminosity. The performance of the CMS detector is assumed to be unchanged with respect to the reference analysis;
- "YR18 systematic uncertainties" scenario (S2): Theoretical uncertainties are scaled down by a factor of two, while experimental systematic uncertainties are scaled down with the square root of the integrated luminosity until they reach a defined minimum value based on estimates of the achievable accuracy with the upgraded detector [11].

Higgs couplings and self-coupling projections

ATLAS + CMS Combinations

from: Higgs Physics at the HL-LHC and HE-LHC ("Yellow Report")

arxiv:1902.00134

Higgs boson self-coupling

Couplings