A high precision narrow-band neutrino beam: the ENUBET project

M. Torti (University Milano Bicocca and INFN) on behalf of the ENUBET Collaboration

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (G.A. n. 681647).

8th International Conference on New Frontiers in Physics, Kolymbari, 21-29 August 2019
The goal of ENUBET is to demonstrate the technical feasibility and physics performance of a neutrino beam where \textit{lepton production at large angles} is monitored at single particle level:

\[
K^+ \rightarrow e^+ \nu_e \pi^0
\]

to tagger
to neutrino detector

Two pillars:
- Build/test a \textbf{demonstrator} of the instrumented decay tunnel
- Design/simulate the layout of the \textbf{hadronic beamline}

Outline
- Beamline simulation
- Experimental validation of detector \textbf{prototypes}
- Updated \textbf{physics performance}

Since 2019, ENUBET is a CERN Neutrino Platform Experiment: NP06/ENUBET

ENUBET Collaboration: 60 physicists, 12 institutions
A narrow-band beam for the precision era of ν physics

Absolute flux of ν_e and ν_μ at the 1% level

Remove the leading source of uncertainty in **neutrino cross section measurement**

Energy of the neutrino known at the 10% level

The ideal tool to study neutrino interactions in nuclei

Flavor composition known at the 1% level

The ideal tool to study NSI and sterile neutrinos at the GeV scale

- Monitor the decays in which ν are produced event-by-event
- “By-pass” uncertainties from POT, hadro-production, beamline efficiency
- Fully instrumented decay region \rightarrow ν_e flux prediction = e^+ counting
• **Proton driver:** CERN (400 GeV), FNAL (120 GeV), J-PARC (30 GeV)
• **Target:** Be, graphite target. FLUKA
• **Focusing:**
 • **Horn:** 2 ms pulse, 180 kA, 10 Hz during the flat top [not shown in fig.]
 • **Static focusing system:** a quadrupole triplet before the bending magnet
• **Transfer line**
 • Kept **short** to minimize early K-decays and those of off-momentum mesons out of tagger acceptance (untagged neutrino flux component)
 • Optics: optimized with TRANSPORT to a 10% momentum bite centered at 8.5 GeV/c
 • Particle transport and interaction: full simulation with G4Beamline
 • **Normal-conducting magnets** (numerical aperture<40 cm): Two quadrupole triplets, one (or two) bending dipole
• **Decay tunnel:** $r = 1$ m, $L = 40$ m, low power hadron dump at the end
• **Proton dump:** position and size under optimization
The ENUBET beam line – particle yields

<table>
<thead>
<tr>
<th>Focusing system</th>
<th>π/pot (10⁻³)</th>
<th>K/pot (10⁻³)</th>
<th>Extraction length</th>
<th>π/cycle (10¹⁰)</th>
<th>K/cycle (10¹⁰)</th>
<th>Proposal (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horn</td>
<td>97</td>
<td>7.9</td>
<td>2 ms (a)</td>
<td>438</td>
<td>36</td>
<td>x 2</td>
</tr>
<tr>
<td>“static”</td>
<td>19</td>
<td>1.4</td>
<td>2 s</td>
<td>85</td>
<td>6.2</td>
<td>x 4</td>
</tr>
</tbody>
</table>

(a) 2 ms at 10 Hz during the flat top (2 s) to empty the accelerator after a super-cycle.
(b) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155.

The horn-based option still allows ~ × 5 more statistics but the static option gained momentum since initial estimates were ~ × 4 too conservative with respect to present simulations!

Advantages of the static extraction:

- No need for fast-cycling horn
- Strong **reduction of the rate** (pile-up) in the instrumented decay tunnel
- Pave the way to a “**tagged neutrino beam**” → ν interaction at the detector associated in time with the observation of the lepton from the parent hadron in the decay tunnel (more later)
- Monitor the μ after the dump at % level (**flux of νµ from π**) [**under evaluation**]
The static beamline

G4Beamline simulation for particles at the entrance and exit of the decay tunnel

Particle budget at tagger entrance

\[\pi^+, p, e^+, \mu^+ \]

Momentum bite (8.5 ± 10%) GeV/c

Divergence of the kaon beam

K\(^+\) at tagger entrance

1 m radius

1 m radius

Spectra at:

tagger entrance

tagger exit

Low energy high angle \(\pi \)

\[\pi^+ \]

\[K^+ \]

Loss due to K decays
Beamline studies

Additional static focusing options
Put all inputs/schemes together
→ pindown the best design in terms of physics and technical feasibility

Preliminary

Example: 2 dipoles scheme with an intermediate quadrupole
- improve the quality of the beam in the tagger scheme
- larger bending angle (15.1°) reducing background from muons, less probable for neutrinos produced on the 0° line to reach the detector
The ENUBET tagger

Calorimeter
Longitudinal segmentation
Plastic scintillator + Iron absorbers
Integrated light readout with SiPM

$\rightarrow e^+/\pi^\pm/\mu$ separation

Integrated photon veto
Plastic scintillators
Rings of 3×3 cm2 pads

$\rightarrow \pi^0$ rejection

Ultra Compact Module
$3 \times 3 \times 10$ cm3 – 4.3 X_0

γ
e^+
e^-

0.5 cm
(i.e. 0.012 X_0)

$h = 3$ cm

ν_e
K^+
π^0

$\rightarrow e^+$ (signal) topology
$\rightarrow \pi^0$ (background) topology
$\rightarrow \pi^+$ (background) topology
The tagger: shashlik with integrated readout

UCM: ultra compact module.
SiPM and electronics embedded in the shashlik calorimeter

CERN PS test beam Nov 2016
Test beam results with shashlik readout

Calorimeter prototype performance with test-beam data at CERN-PS T9 line 2016-2017

Tested response to mip, e and π

- e.m. energy resolution: $17\%/\sqrt{E}$ (GeV)
- Linearity deviations: <3% in 1-5 GeV range
- From 0 to 200 mrad → no significant differences
- Work to be done on the fiber-to-SiPM mechanical coupling → dominates the non-uniformities
- Equalizing UCM response with mips MC/data already in good agreement
- Longitudinal profiles of partially contained π reproduced by MC at 10% precision

Ballerini et al., JINST 13 (2018) P01028
Polysiloxane shashlik prototypes

Increased resistance to irradiation (no yellowing), **simpler** (just pouring + reticulation)

A $13X_0$ **shashlik prototype** tested in October 2017 (**first application** in HEP) and May 2018.

15 mm thick scintillators to compensate reduced light yields

WLS-SiPM optical coupling
SiPM irradiation measurements at INFN-LNL and CERN

- At the CN Van de Graaf on July 2017 → 1-3 MeV n with fluences up to 10^{12}/cm2 in a few hours

A shashlik calorimeter equipped with irradiated SiPMs later tested at CERN-PS T9 in Oct 2017

- By choosing SiPM cell size and scintillator thickness (~light yield) properly, **mip signals remain well separated from the noise even after typical expected irradiation levels**
- Mips can be used from **channel-to-channel intercalibration** even after maximum irradiation.
The tagger: lateral readout option

Light collected from scintillator sides and bundled to a single SiPM reading 10 fibers (1 UCM).

SiPM are not immersed anymore in the hadronic shower → less compact but much reduced neutron damage (larger safety margins), better accessibility, possibility of replacement. Better reproducibility of the WLS-SiPM optical coupling.

Sampling calorimeter with lateral WLS light collection

May 2018, CERN-PS test beam

Large SiPM for 10 WLS 4x4 mm²
Achievable neutron reduction with lateral readout

- 30 cm of borated polyethylene in front of SiPM
- FLUKA full simulation. 400 GeV protons.
- Very good suppression especially below 100 MeV.
- Factor ~18 reduction averaging over spectrum.

Neutron energy

- FLUKA

Si \text{n} damage weight function $\times 10^{-10}$

Neutron longitudinal position along the tunnel
Test beam results with lateral readout option

September 2018 CERN-PS: a module with hadronic calorimeter for pion containment and integrated t_0-layer

- Good signal amplitude
- Checking impact of light connection uniformity and reproducibility of WLS-SiPM optical match (In progress).

Efficiency maps

Simulation

Resolution

PID
The tagger demonstrator

- Length ~ 3 m
 - allows the containment of shallow angle particles in realistic conditions
- Fraction of ϕ
- Due by 2021
The photon veto

At CERN-PS T9 line 2016-2018

- γ / e^+ discrimination + timing
- scintillator (3 × 3 × 0.5 cm3) + WLS Fiber (40 cm) + SiPM
- light collection efficiency $\rightarrow >95$
- time resolution $\rightarrow \sigma_t \sim 400$ ps
- 1mip/2mip separation

charge exchange: $\pi^- p \rightarrow n \pi^0 (\rightarrow \gamma\gamma)$

Trigger: PM1 + VETO + PM2

- π^-
- $e^+ e^-$

Input for simulations
K_{e3} positrons reconstruction

Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018. Includes particle **propagation** and **decay**, from the transfer line to the detector, hit-level detector response, **pile-up** effects.

Analysis chain

- **Event Builder**: Identify the **seed** of the event (UCM with largest energy deposit in inner layer and > 20 MeV). **Cluster neighboring cells** close in time. **Iterate** on not-yet-clustered cells.
- **e/π/µ separation**: **Multivariate** analysis based on **6 variables** (pattern of the energy deposition in the calorimeter) with TMVA
- **e/γ separation**: Signal on the tiles of the **photon veto** (0-1-2 mip)

Before tuning of shielding

Reco level full sim.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{geom}</td>
<td>0.36</td>
</tr>
<tr>
<td>ε_{sel}</td>
<td>0.55</td>
</tr>
<tr>
<td>ε_{tot}</td>
<td>0.20</td>
</tr>
<tr>
<td>Purity</td>
<td>0.26</td>
</tr>
<tr>
<td>S/N</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Instrumenting half of the decay tunnel: K_{e3} e^+ at single particle level with a S/N = 0.46
Neutrino events per year at the detector

- **Detector mass**: 500 t (e.g. Protodune-SP or DP at CERN, ICARUS at Fermilab, WC at J-PARC)
- **Baseline** (i.e. distance between the detector and the beam dump): 50 m
- 4.5×10^{19} pot at SPS (0.5 / 1 y in dedicated/shared mode) or 1.5×10^{20} pot at FNAL

- ν_μ from K and π are **well separated** in energy (narrow band)
- ν_e and ν_μ from K are constrained by the tagger measurement (K_{e3}, mainly $K_{\mu2}$).
- ν_μ from π: μ detectors downstream of the hadron dump (under study)

1.2 million ν_μ Charged Current per year

14000 ν_e Charged Current per year

98.4% from kaons μ contribution is small (tunnel is “short”)
νµ CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis.

The beam width at fixed R (≡ ν energy resolution for π component) is:
- 8% for r ~ 50 cm, <Eν> ~ 3 GeV
- 22% for r ~ 250 cm, <Eν> ~ 0.7 GeV

+ Binning in R allows to explore the energy domains of DUNE/HK and enrich samples in specific processes (quasi-elastic, resonances, DIS) for cross section measurements
Time tagged neutrino beams

- Event time dilution → **Time-tagging**
- **Associating a single neutrino interaction to a tagged e⁺** with a small “accidental coincidence” probability through *time coincidences* E_ν and flavor of the ν measured "a priori" event by event. Compare “E_ν from decay kinematics ” \leftrightarrow“E_ν from ν interaction products ”

Presently with 2.5×10^{13} pot / 2s slow extraction:
- genuine K_{e3} cand. : 80 MHz \rightarrow 1 every ~ 12 ns
- background K_{e3} cand. $\sim 2 \times$ \rightarrow 1 cand. every ~ 4 ns

With $\delta = 0.5 \oplus 0.5$ ns resolutions: already interesting!
S/N ratio will likely improve with further tuning.

<table>
<thead>
<tr>
<th>$\delta t - \Delta/c$</th>
<th>δ</th>
</tr>
</thead>
</table>

δ = combined t-resolution (e⁺ tagger and ν detector)

Time coincidence of ν_e^{CC} and e⁺

$|\delta t - \Delta/c| < \delta$

Diagram:
- Event time dilution \rightarrow **Time-tagging**
- **Associating a single neutrino interaction to a tagged e⁺** with a small “accidental coincidence” probability through *time coincidences* E_ν and flavor of the ν measured "a priori" event by event. Compare “E_ν from decay kinematics ” \leftrightarrow“E_ν from ν interaction products ”

Presently with 2.5×10^{13} pot / 2s slow extraction:
- genuine K_{e3} cand. : 80 MHz \rightarrow 1 every ~ 12 ns
- background K_{e3} cand. $\sim 2 \times$ \rightarrow 1 cand. every ~ 4 ns

With $\delta = 0.5 \oplus 0.5$ ns resolutions: already interesting!
S/N ratio will likely improve with further tuning.

Diagram:

\[\delta = \text{combined t-resolution (e⁺ tagger and } \nu \text{ detector)}\]
Conclusions and next steps

ENUBET is a narrow band beam with a high precision monitoring of the flux at source (O(1%)) and control of the E_ν spectrum (20% at 1 GeV → 8% at 3 GeV)

In the first two and a half years
- first end-to-end simulation of the beamline
- feasibility of a purely static focusing system ($10^6 \nu^CC_{\mu}, 10^4 \nu^CC_{e}/y/500$ t)
- full simulation of e^+ reconstruction: single particle level monitoring
- completed the test beams campaign
- strengthened the physics case: → slow extraction + “narrow band off-axis technique”

The ENUBET technique is very promising and the results we got so far exceeded our expectations

2019: freeze light readout technology (shashlik versus “lateral readout”)
2019: Further tuning of the beamline design (improve current S/N for e^+)
CDR at the end of the project (2021): physics and costing
Build the demonstrator prototype of the tagger (2021)
Thank you!