Overview of the PHENIX Spin Program

Chong Kim

University of California at Riverside

For the PHENIX Collaboration

ICNFP2019

Orthodox Academy of Crete, Greece

Aug. 24, 2019

<u>Outline</u>

• Introduction

RHIC and PHENIX

• Longitudinal spin highlights

- Polarized light sea quarks ($\Delta \overline{q}$)
- Polarized gluons (ΔG)

• Transverse spin highlights

 $- p^{\uparrow} + p \text{ vs. } p^{\uparrow} + A \text{ in various probes}$

<u>Introduction</u>

Motivation

- It's not a simple sum of big 3 chunks
 - Jaffe-Manohar spin sum rule: $S_p = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z$
 - Unexpectedly large, increasing A_N vs. p_T which can't be explained by conventional pQCD
 - PHENIX (RHIC) aims both longitudinal spin structure and transverse spin phenomena

Introduction RHIC

- RHIC @ Brookhaven Lab., NY
 - Polarized p + p @ vs = 62.5 to 510 (GeV)
 - Maximum 120 bunches per ring, bunch by bunch polarization
 - Average beam polarization ($\langle P \rangle$) \approx 60 (%)

Introduction RHIC spin runs (2009 - 2015)

Year	√s (GeV)	Туре	$\left< P \right>$ (Blue/Yellow) (%)	Int. <i>L</i> (pb ⁻¹)
09	200	L, p + p	<mark>56 /</mark> 57	15.6
	500	L, p + p	33 / 36	14
11	500	L, p + p	48 / 48	27.6
12	510	L, p + p	50.3 / 53.5	49.6
13	510	L, p + p	50.5 / 55.4	242.1
15	200	L, p + p	53.0 / 57.4	х
11	500	T, p + p	48 / 48	х
12	200	Т, р + р	61.8 / 56.6	17.6
15	200	T, p + p	53.0 / 57.4	110.4
		T, p + Al	53.8	1233.5 (nb ⁻¹)
		T, p + Au	59.6	403.4 (nb ⁻¹)

• Summary of RHIC spin runs

- PHENIX decommissioned in 2016
- CAVEAT: int. *L* can be different by the observable

(the values presented here was obtained by MB trigger)

Introduction PHENIX detectors (2016)

- **Central Arms** ($|\eta| < 0.35$, $\Delta \phi = \frac{\pi}{2} \times 2$)
 - VTX (Si pixel and strip, from 2011)
 - Tracking: DC, PC
 - pID: RICH, ToF
 - EMCal: PbGl, PbSc

- Muon Arms (1.2 < |η| < 2.2 (S) or 2.4 (N), Δφ = 2π)
 - FVTX (Si strip, from 2012)
 - Tracking: MuTr (CS chambers)
 - pID: MuID (steel interleaved larocci tubes), RPCs
- MPC/MPC-Ex (3.1 < |η| < 3.8, Δφ = 2π)
 - EMCal (PbWO₄) / Preshower by W + Si minipads

Longitudinal Spin Highlights

Longitudinal Spin

Motivation

- $S_p = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z$
 - ΔΣ?
 - $(\Delta q + \Delta \bar{q})$: well constrained down to x ~ 10⁻³, thanks to DIS results
 - Δ*q*̄: poorly constrained with large uncertainty,
 mainly originated from fragmentation functions
 → RHIC: fragmentation free *W* decay leptons

• ∆G?

Poorly constrained:
 limited access in DIS via evolution effect
 → RHIC: gluon sensitive polarized p + p collisions, various probes (π⁰, η, jet, ...)

Longitudinal Spin

 $\Delta \overline{q}$ access by $W^{\pm} \rightarrow I^{\pm}$

•
$$\Delta \overline{q}$$
 measurements at PHENIX

- Midrapidity ($|\eta| < 0.35$): $W^{\pm} \rightarrow e^{\pm}$
- − Forward rapidity (1.2 < $|\eta|$ < 2.2 / 2.4): $W^{\pm} \rightarrow \mu^{\pm}$

$$A_{L} = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

$$A_{L}^{W+} = \frac{-\Delta u(x_{1})\bar{d}(x_{2}) + \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})}$$

$$A_{L}^{W-} = \frac{-\Delta d(x_{1})\bar{u}(x_{2}) + \Delta \bar{u}(x_{1})d(x_{2})}{d(x_{1})\bar{u}(x_{2}) + \bar{u}(x_{1})d(x_{2})}$$

technically,

$$A_{L}^{W} = \frac{1}{P} \frac{N_{+} - RN_{-}}{N_{+} + RN_{-}}$$

- *P* : avg. polarization of each beam
- N+ (N-) : yields in same (opposite) helicity
- $R = \frac{L++}{L+-}$: relative luminosity

<u>Longitudinal Spin</u> $\Delta \overline{q}$ access by $W^{\pm} \rightarrow e^{\pm}$

• $W^{\pm}/Z^{0} \rightarrow e^{\pm}$, A_{L} , $|\eta| < 0.35$, with integrated Run11-13 data

- $\sqrt{s} = 500 (11) / 510 (12, 13) \text{ GeV}$, Int. $L = 240 \text{ pb}^{-1}$
- Signal extraction via charge isolation + backgrounds estimation by Gaussian Process Regression
- Probed x (parton momentum fraction) of ~ 0.16 (M_W / Vs)

Longitudinal Spin

 $\Delta \overline{q}$ access by $W^{\pm} \rightarrow \mu^{\pm}$

• $W^{\pm}/Z^{0} \rightarrow \mu^{\pm}$, A_L, , 1.2 < $|\eta|$ < 2.2 / 2.4, with integrated RUN12-13 data

- $\sqrt{s} = 510$ GeV, Int. L = 53 (2012) + 285 (2013) pb⁻¹
- − **<u>First</u>** W^{\pm} → μ^{\pm} measurement at $|\eta| > 1$, probed x of ~ 0.1 (backward) / ~ 0.3 (forward)
- Consistent cross sections to existing RHIC $W^{\pm} \rightarrow e^{\pm}$ within uncertainties
- Discrepancy to the theory curves at backward W⁺ and forward W⁻

Longitudinal Spin

ΔG access by various probes

ΔG measurements at PHENIX

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

$$= \frac{\Sigma_{abf} \ (\Delta f_a \otimes \Delta f_b) \otimes \Delta \widehat{\sigma}^{\ a+b \to h+X} \otimes D_f^h}{\Sigma_{abf} \ (f_a \otimes f_b) \otimes \widehat{\sigma}^{\ a+b \to h+X} \otimes D_f^h}$$

- f (Δf) : unpol (pol) PDF
- $\hat{\sigma}$ ($\Delta \hat{\sigma}$) : unpol (pol) partonic cross section
- D_f^h : fragmentation function

technically,

$$A_{LL} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

- *P* : avg. polarization of each beam
- *N*++ (*N*+-) : yields in same (opposite) helicity
- $R = \frac{L++}{L+-}$: relative luminosity
- Midrapidity ($|\eta| < 0.35$): direct γ, π^0 , π^{\pm} , η, heavy flavor decay electrons
- Forward (1.2 < $|\eta|$ < 2.2 / 2.4, 3.1 < $|\eta|$ < 3.8): heavy flavor decay muons, π⁰, η, π⁰ rich EM clusters

Longitudinal Spin ΔG access by π^0

• Inclusive π^0 , A_{LL} , $|\eta| < 0.35$, with Run12-13 data

PRD93, 011501 (2016)

- Vs = 510 GeV, Int. $L = 20 (2012) + 108 (2013) \text{ pb}^{-1}$
- Confirms non-zero gluon polarization via hadron production (first observed by 2009 STAR jet)
- Extended x coverage down to ~ 0.01

Longitudinal Spin ΔG access by π^{\pm}

- π[±], A_{LL}, |η| < 0.35, with Run13 data
 - Vs = 510 GeV, Int. L = 108 pb⁻¹
 - Improved statistical precision + Matches to theory within uncertainty
 - Complementary probe: hardens previous π^0 / π^{\pm} results

Longitudinal Spin Impact of RHIC AG measurement

- Impact of RHIC data
 - Left: DSSV new fit, w/ RHIC RUN9 data $\rightarrow \int_{0.05}^{1} dx \,\Delta g(x) = 0.20 \, {}^{+0.06}_{-0.07}$ (90 % C.L.)
 - Right: reweighted NNPDFpol1.1, PHENIX 2009 + 2013 π^0

Transverse Spin Highlights

<u>Transverse Spin</u>

Motivation

- Transverse single spin asymmetry (A_N)
 - Large, increasing A_N : expected to be very small in conventional pQCD calculation

 \rightarrow TMD (transverse momentum dependent) / Collinear Twist 3

<u>Transverse Spin</u>

Motivation - TMD and Twist 3

- TMD
 - Requires two scales: Q^2 (hard) and p_T (soft)
 - SIDIS, Drell-Yan, W/Z, hadrons in jets...
 - Access full transverse momentum k_T

Collinear Twist-3

- Requires single hard scale: p_T
- Proper for inclusive A_N (π^0 , γ , jet)
- Access average transverse momentum <k_T>

$$-\int d^2 k_{\perp} \frac{k_{\perp}^2}{M} f_{1T}^{\perp q} (x, k_{\perp}^2)|_{SIDIS} = T_{q,F}(x, x)$$

<u>**Transverse Spin</u>** Motivation - p^{\uparrow} + p vs. p^{\uparrow} + A</u>

- $A_N \text{ in } p^{\uparrow} + p$
 - Initial or Final state effect
 - Spin Momentum correlation
 - Spin Spin correlation

- $A_N \text{ in } p^{\uparrow} + A$
 - Nuclear modification on PDFs
 (EMC effect, Nuclear shadowing)
 - Gluon saturation effect (CGC)
 - Multiple scatterings

Transverse Spin

Midrapidity π^0 and η

- π^0 and ηA_N at $|\eta| < 0.35$
 - − √s = 200 GeV (2015)
 - Sensitive to Twist-3 trigluon correlations
 - Consistent with zero
 - No A dependence observed

<u>Transverse Spin</u>

- − √s = 200 GeV (2015)
- int. L = 40 (pp), 6.0 (pAI), and 6.6 (pAu) pb⁻¹
- p + p and p + Al are consistent with zero, but p + Au favors negative A_N

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 p_(GeV/c) Transverse Spin Forward charged hadron

- π^{\pm} and $K^{\pm} A_N$ at 1.2 < $|\eta|$ < 2.2
 - − √s = 200 GeV (2015)
 - Increasing $h^+ A_N$ for $x_F > 0$ in p + p
 - Clear A^{1/3} dependence

Transverse Spin Very forward neutron

- Collisions with small impact parameter (BBC-tag) show negative asymmetry
- Collisions with large impact parameter (BBC-veto) show strong A dependence

Summary

• Longitudinal spin

- Polarized light sea quarks ($\Delta \overline{q}$):
 - a. Midrapidity W \rightarrow e: well matches with STAR data and new theoretical curves
 - b. Forward W $\rightarrow \mu$: 1st measurement of W A_L at $|\eta| > 1$
- Polarized gluons (ΔG)
 - a. Confirms non-zero gluon polarization via hadron (π^0 , J/ ψ) production
 - b. Extended x coverage

• Transverse spin

- Consistent zero A_N in midrapidity, no A dependence
- Noticeably large A_N for certain observable in forward rapidity, strong A dependence

ICNFP2019 - Crete, Greece

arXiv: 1501.01220

arXiv: 1602.03922

• RHIC/AGS Users Meeting 2019 (<u>https://www.bnl.gov/aum2019</u>)

<u>Backup</u> $\Delta \bar{q}$ access by $W^{\pm} \rightarrow e^{\pm} / W^{\pm} \rightarrow \mu^{\pm}$

- $W^{\pm} \rightarrow e^{\pm}$ at $|\eta| < 0.35$
 - Distinct Jacobian peak
 - Triggered by energy
 - Momentum by energy
 - Charge by tracking in B-field

- $W^{\pm} \rightarrow \mu^{\pm}$ at 1.2 < $|\eta| < 2.2 / 2.4$
 - Suppressed/No Jacobian peak
 Triggered by momentum
 Momentum by tracking in B-field
 Charge by tracking in B-field

50

p^I_T

10⁻²

5 10

15 20 25 30 35 40 45 50 55

p_ [GeV/c]

- c. Smearing in p_T reconstruction
- No single variable can discriminate W signal from BG clearly,

but each variable has advantage over certain type of BG

<u>Backup</u> $W \rightarrow \mu$ analysis challenge: hadronic BG

- Hadronic BG in Muon Arms
 - Relatively low momentum charged hadrons (mainly π^{\pm} and K[±], p_T < 20 (GeV))
 - Only small fraction of them penetrate through upstream absorber and reach MuTr, but enormous total cross section creates large backgrounds

<u>Backup</u> $W \rightarrow \mu$ analysis signal extraction

Multivariate analysis: W likelihood (Wness)

$$- \text{ Wness} = \frac{\lambda_{sig}}{\lambda_{sig} + \lambda_{BG}},$$

where $\lambda_{sig} = (\lambda_{DG0, w} \cdot \lambda_{DDG0, w} \cdot \lambda_{DCA_r, w}...)$

- Improve sample purity by applying high Wness filter on μ candidates
- Signal estimation by unbinned max. likelihood fit

Backup RHIC W (all)

PRD99, 051102 (2019)

Backup LO dominant partonic processes

LO helicity dependent double spin asymmetries for partonic reactions at RHIC

Reaction	Dom. partonic process	probes	LO Feynman diagram			
$\vec{p}\vec{p} \rightarrow \pi + X$ [61, 62]	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	est and the second seco	مار 0.75	C	A
$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$ [71, 72]	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)	0.5	67	B
$\vec{p}\vec{p} \to \gamma + X$ $\vec{p}\vec{p} \to \gamma + \text{jet} + X$ $\vec{n}\vec{n} \to \gamma\gamma + X$	$egin{array}{ccc} ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{q}ec{g} ightarrow\gamma q \end{array}$	$ \begin{array}{c c} \Delta g \\ \Delta g \\ \Delta g \\ \Delta a \ \Delta \bar{a} \end{array} $	<u>م</u> رز	0.25		
$\begin{bmatrix} 67, 73, 74, 75, 76 \end{bmatrix}$		$\Delta q, \Delta q$		-0.25	A $gg \rightarrow gg$	$D q\bar{q} \rightarrow q\bar{q}$
$\begin{array}{c} pp \rightarrow DX, BX \\ [77] \end{array}$	$gg \rightarrow cc, bb$		Josef	-0.23	$\begin{array}{ccc} & B qq \rightarrow qq \\ & C qq' \rightarrow qq' \\ & & q\bar{q}' \rightarrow q\bar{q}' \end{array}$	$\begin{array}{ccc} E & gg \rightarrow q\bar{q} \\ & qq \rightarrow gg \\ & q\bar{q} \rightarrow g\gamma \end{array}$
$\vec{p}\vec{p} \to \mu^+\mu^- X$ (Drell-Yan) [78, 79, 80]	$\vec{q}\vec{q} \to \gamma^* \to \mu^+\mu^-$	$\Delta q, \Delta \bar{q}$	$\rightarrow \sim$	-0.75	$\begin{array}{c} qg \rightarrow qg \\ qg \rightarrow q\gamma \end{array}$	$\begin{array}{c} q\bar{q} \rightarrow q'q' \\ q\bar{q} \rightarrow l\bar{l} \end{array}$
$ \vec{p}\vec{p} \to (Z^0, W^{\pm})X p\vec{p} \to (Z^0, W^{\pm})X [78] $	$ \begin{array}{c} \vec{q} \vec{\vec{q}} \to Z^0, \vec{q}' \vec{\vec{q}} \to W^{\pm} \\ \vec{q}' \vec{q} \to W^{\pm}, q' \vec{\vec{q}} \to W^{\pm} \end{array} $	$\Delta q, \Delta \bar{q}$	>	-1	E	
					-0.8 -0.4	0 0.4 0.8

 $\cos\theta$

- $\Delta \sigma (pp \rightarrow \pi^0 X) \approx \Delta q (x_1) \otimes \Delta g (x_2) \otimes \Delta \hat{\sigma}^{gq \rightarrow gq} (\hat{s}) \otimes D_q^{\pi^0}(z)$
 - $\Delta q(x_1)$: quark PDF (parton distribution functions), via DIS
 - $\Delta g(x_2)$: gluon PDF, ?
 - $\Delta \hat{\sigma}^{gq \rightarrow gq}(\hat{s})$: partonic hard scattering cross section, via pQCD calculation
 - $D_q^{\pi^0}(z)$: fragmentation functions, via e ⁺ e ⁻ collision

<u>Backup</u> Central arm π^0 analysis

PRD90, 012007

• Inclusive π⁰ analysis

- Charge veto (θ_{cv}) + Time of flight + Relative Luminosity correction + Background asymmetry correction (by background sampling)

Backup Color interactions in QCD

This slide was shamelessly stolen from **Carl Gagliardi**'s SPIN2018 talk! ٠

Color interactions in QCD Controlled non-universality of the Sivers function

Backup Forward open heavy flavor

- Open heavy decay μ A_N at 1.2 < |η| < 2.2
 - $\sqrt{s} = 200 \text{ GeV}$, int. $L = 9.2 \text{ pb}^{-1} (2012)$
 - Sensitive to Twist-3 trigluon correlations
 - Consistent with zero within uncertainties

PRD95, 112001 (2017)

<u>Backup</u> Midrapidity $\pi^0 A_N$, vs. A

