Tagged Short Range Correlations for Medium to Heavy Ions

Florian Hauenstein, Old Dominion University
ICNFP 2019
08/24/19
Deep Inelastic Scattering (DIS)

\[x_B = \frac{Q^2}{2m\omega} \]

\[Q^2 = 4E_0E \sin^2 \left(\frac{\theta}{2} \right) \]

\[\omega = E - E' \]

\[
\frac{d\sigma}{d\Omega dE'} = \left(\frac{2\alpha E'}{Q^2} \right)^2 \times \left(\frac{1}{v} F_2 + \frac{2}{m} F_1 \tan^2 \frac{\theta}{2} \right)
\]
The EMC Effect in DIS Scattering

Quark distributions \((F_2) \) in nucleons bound in nuclei different to distributions in free nucleons, here: \(F_2^C \neq 6 \times F_2^d \)

SLAC data (1994)
EMC slope: 0.32

\[
\frac{2\sigma_C}{12\sigma_d}
\]

\(x \)

Fermi-motion

PRD 49, 4338 (1994)
PRC 65, 015211 (2001)
EMC Effect in Different Nuclei

B. Schmookler et al. (CLAS collaboration), Nature 566, 354 (2019)

\[
\frac{\sigma_A}{A} / \frac{\sigma_D}{2} \quad 12C / D
\]

\[
\frac{\sigma_A}{A} / \frac{\sigma_D}{2} \quad 27Al / D
\]

\[
\frac{\sigma_A}{A} / \frac{\sigma_D}{2} \quad 56Fe / D
\]

\[
\frac{\sigma_A}{A} / \frac{\sigma_D}{2} \quad 208Pb / D
\]
EMC Models

Nucleon Motion
- All nucleons modified slightly
- A few nucleons modified a lot

Medium Modification

Mean Field Modifications

Short Range Correlations (SRC)
Short Range Correlations

- NN pair with
 - large relative momentum > 300 MeV/c
 - small c.m. momentum
 - ~20% of nucleons in nuclei
Short Range Correlations

- NN pair with
 - large relative momentum > 300 MeV/c
 - small c.m momentum
- ~20% of nucleons in nuclei

Knocked-out high-momentum nucleons come with a recoiling partner.

E. Piasetzky et al., PRL 97, 162504 (2006)
Nucleon Momentum Distribution

Mean Field Region
(single-nucleon behavior)

Correlated tail
(2N-SRC behavior)

~1/k^4

80%

20%
Universality of High Momentum Tail

SRCs in Inclusive Scattering

- Quasi-Elastic scattering
- Plateaus due to SRCs

\[\text{Missing Momentum} = p - q \]

\[\omega, q \]

B. Schmookler et al. (CLAS collaboration), Nature 566, 354 (2019)

\[\frac{\sigma_A}{A}/\sigma_D/2 \]
SRCs in Exclusive Scattering

- (e’p) and (e’n) measurements
- Indication of np-dominance for SRC pairs

Duer et al. (CLAS collaboration), Nature 560, 617 (2018)
np-Dominance

- (e’pp) & (e’nп) measurements
- Probability for np pairs about ~18 larger than for pp pairs

We can study SRCs by breaking them.

\[\text{Missing Momentum} = p - q \]

Leading Proton
Recoil Neutron

\[\omega, q \]

[Graph showing np fraction and pp fraction for different elements (C, Al, Fe, Pb) with 68% and 95% C.L. ranges.]

Or Hen et al., Science 346, 614 (2014)
To Review: EMC and SRC

EMC Models
- Nucleon Motion
 - Insufficient
- Medium Modification
 - All nucleons modified slightly
 - A few nucleons modified a lot
- Mean Field Modifications
- Short Range Correlations (SRC)

B. Schmookler et al., Nature 566, 354 (2019)

DIS

QE
EMC and SRC Correlation

- Are high-momentum nucleons responsible for the EMC effect?
- Does nucleon modification depend on nucleon momentum?
Tagged DIS on Deuterium

- “Tag“ interacting nucleon by measuring spectator
- How does the bound nucleon structure function depend on nucleon momentum?
- Explaining the EMC effect
Tagged DIS at JLab

Hall B:
CLAS 12 + Backward Angle Neutron Detector (BAND)

- Took first data in Spring 19
- More to come in Fall 19
Two upcoming experiments will test the EMC-SRC connection.

Deep inelastic scattering with a recoiling nucleon:
- Scattered electron jet from struck quark
- Deuterium
- LAD
- 11 GeV e⁻ – SHMS
- HMS
- GEMs
- Spectator proton
- JLab Hall C

Tagged DIS at JLab

Hall B:
CLAS 12 + Backward Angle Neutron Detector (BAND)

- Took first data in Spring 19
- More to come in Fall 19

Hall C:
SHMS/HMS + Large Angle Detector (LAD)

- LAD built, GEMs to be build
- Run in 2021?
DIS Recoil Tagging $d(e,e'N)X$ - Expected Results

$\alpha_s = (E_s - p_{s}^{z})/m_s$

ρ_{s}^{z} [GeV/c] 0.4
Tagged DIS at EIC

- Proton and Neutron tagging
- Polarized deuterons (vector/tensor)
- A > 2 nuclei
- Exclusive processes

- Detecting of recoil particles in forward direction
 - up to low angles, full acceptance
 - over a wide range of momenta
- Possible detection of A-2 system

Jefferson Labs’ LDRD project (2014/15)
```
Physics potential of polarized light ions with EIC@JLab```
C. Weiss, D. Higinbotham, P. Nadel-Turonski, W. Cosyn, V. Guzey,
Ch. Hyde, K. Park, M. Sargsian, M. Strikman

Webpage: https://www.jlab.org/theory/tag/
(JL)EIC Overview

- Figure 8 shape design
- Luminosity $10^{33} - 10^{34}$ cm$^{-2}$ s$^{-1}$ (1000x HERA)
- 12 GeV e$^{-}$ 5GeV (lumi max) on 200 GeV p

from M. Diefenthaler HUGS talk 2019
(JL)EIC Ion Detection

- Forward detection of recoil baryons and target fragments
- Detection demanding
  - Need good resolutions
  - Particles down to $p_T = 0$ GeV/c
  - Neutral detection
  - Ion PID
- Detectors
  - Roman pots
  - Zero degree calorimeter
  - Tracking detectors
Tagged SRC at EIC

``Tagged SRCs for medium and heavy ions at the EIC“ (LDRD1912):

• Feasibility of tagged SRCs physics at (JL)EIC
  • Rates at high $x$
  • Resolution at high $x$
  • Beam energies

• Physics Reach

• Simulation and Modeling
  • BeAGLE - eA event generator for EIC
  • Implementing SRCs in BeAGLE
  • EIC detector requirements
  • Reconstruction methods
BeAGLE - Benchmark eA Generator for LEptoproduction


Merger of

- PYTHIA 6 (hard interaction)
- Energy loss of partons: PyQM
- Nuclear environment
  - DPMJET
  - nPDF from EPS09
- Nuclear evaporation by DPMJET3+FLUKA

Short Range Correlations and BeAGLE

- Input to BeAGLE:
  - DIS events based on SRC driven EMC model
  - Quasi-Elastic SRC events from Generalized Contact Formalism (GCF) generator
  - $(A-2)$-system handled by DPMJET3+FLUKA
  - LDRD Project: Focus on $e+C$ and $e+Pb$ simulations
DIS Rate Estimates from $F_2$ Parametrization

$F_2(x,Q^2)$ based on super-fast quark yield parametrization, N. Fomin PRL 105, 212502 (2010)


- Measuring EMC effect at high $Q^2$ easy —> high rate
- SRC ($x > 1$) at high $Q^2$ challenging but non zero rate
Quasielastic Simulation Results

(JL)EIC e+C, 5x50 GeV², QE selection cuts

- Leading, Recoil and Evaporation Nucleons well separated
- Recoil nucleons in challenging 5 - 15 mrad detection region

Plots by Mark Baker

0
0.5
1
1.5
2
2.5
0
0.1
0.2
0.3
0.4
0.5
arb. units

Evaporation Nucleon
Recoil Nucleon
Leading Nucleon

0
5
10
15
20
25
30
35
40
45
50
θ (mr)

Evaporation Nucleon
Recoil Nucleon
Leading Nucleon

Plots by Mark Baker

0
0.5
1
1.5
2
2.5
0
0.1
0.2
0.3
0.4
0.5
arb. units

Evaporation Nucleon
Recoil Nucleon
Leading Nucleon

0
5
10
15
20
25
30
35
40
45
50
θ (mr)
Summary and Outlook

- EMC-SRC correlation from electron scattering
- Tagged DIS measurement at JLab to explain EMC effect
  - Measurement of $F_2^p$ with CLAS12 plus BAND
  - Measurement of $F_2^n$ in Hall C with LAD (2021?)
- SRC physics possibilities at (JL)EIC
  - LDRD project
  - First simulation results promising

Near term:
- Continuation of EIC-LDRD project
  - Simulation of DIS event from SRC-EMC model
  - Effects of FSI and intranuclear cascading
  - Resolution requirements
Back up slides
Resolution for $x$ and $Q^2$ in $ep$

- For electron only, worse low $y$ (high-$x$) resolution
- For JB method, low $y$ better but low $Q^2$ worse
- Need a more general approach (e.g. kinematic fitting) for $eA$ in general, and high-$x$ in particular

Electron Only Method

$$Q_e^2 = 4EE' \cos^2(\theta/2)$$

$$= \frac{p_{i,e}^2}{1 - y_e}$$

Jacquet-Blondel Method

$$Q_{JB}^2 = \frac{(\sum_i p_{x,i})^2 + (\sum_i p_{y,i})^2}{1 - y_{JB}}$$

$$= \frac{p_{i,h}^2}{1 - y_{JB}}$$
**EIC Detector**

**What do we measure?**
- Lepton scattering on a proton
- Current jet (or hadron)
- Target fragments

**Inclusive DIS:**
- Only electron is detected

**Semi-Inclusive DIS (SIDIS):**
- Electron and current jet (hadron) are detected.

**Exclusive reactions:**
- All particles are detected

**Scattered electron**

**Current jet (or hadron)**

**Target fragments**
QE Simulation Results

Neutrons from e+C JLEIC 5x50 $Q^2 > 3$ GeV$^2$ $x>1.2$

Protons from e+C JLEIC 5x50 $Q^2 > 3$ GeV$^2$ $x>1.2$

Evaporation Neutron

Recoil Neutron

Leading Neutron

Evaporation Proton

Recoil Proton

Leading Proton

Evaporation Proton

Recoil Proton

Leading Proton

Evaporation Proton

Recoil Proton

Leading Proton
F₂ from N. Fomin Paper and Reimplementation

N. Fomin PRL 105, 212502 (2010)

Hauenstein  | 08/24/2019
FSI in Tagged DIS

DEEPS showed little FSI at back angles.

Klimenko et al., PRC 73 035212 (2006)
Theories

Theories identify virtuality as the key to producing EMC-like modification.

- **Binding**
  - Free
  - Bound

- **Rescaling**
  - Free

- **Point-like Configuration Suppression**
  - Free
  - Free
  - Bound

Mathematical expression:

\[ A - 1 \]