SEARCHES FOR LONG-LIVED PARTICLES WITH THE ATLAS DETECTOR

ON BEHALF OF THE ATLAS COLLABORATION

August 2019 - ICNFP2019

Particles can gain a large lifetime (small Γ) a number of ways

2n

Small couplings (e.g. RPV decays) $\Gamma \sim \varepsilon^2 \left(\frac{m}{\Lambda}\right)$

Small phase space

Effective Coupling (+Loop Suppression)

And particles do in the SM!

[1810.12602] LL, C Ohm, A Soffer, T Yu

Why is this hard?

A Long-Lived Particle could break any of these!

ATLAS was **not designed** to look for **displaced** new physics

Reconstruction algorithms, detector geometry, trigger, all designed assuming particles emerge from the collision point

Why is this hard?

Dedicated Tracking

- Very few dedicated triggers for Long-Lived Particles
- Custom reconstruction
 - Rerun tracking for large displacement
 - Displaced Vertexing
 - "Disappearing Tracks"
 - "Slow muons", etc etc etc
- In order to re-run reco, very special data handling needs
 - Save a subset of the events in a RAW format for special reconstruction

DIRECT VS INDIRECT DETECTION

Direct Detection

Measure interactions of SM-charged LLP with detector
 Primary
 Displaced

 Vertex
 Vertex (ID)

 ID
 ECAL
 HCAL

Indirect Detection

Measure displaced decay products

[Same as in Dark Matter case]

DIRECT DETECTION

nomalous Ionization calorimeter

8

DIRECT DETECTION

- Highly Ionizing Particles / Magnetic
 Monopoles
 NEW!
- <u>Anomalous Pixel dE/dx</u>
- <u>Slow Muon, dE/dx, Tile Timing</u>
- **Disappearing Tracks**
- <u>Multiply Charged Particles</u>

<6 MO OLD

INDIRECT DETECTION

C

C

INDIRECT DETECTION

- Looking for the displaced decay products of BSM LLPs
- Displaced vertexing in tracker or muon system
- Mid-calorimeter jets
- Late-arriving decay products
- Non-pointing decay products
 - Studies on non-pointing jets from LLPs [<u>ATL-PHYS-PUB-2019-025</u>]

LONG-LIVED SCALAR TOP PARTNERS (STOPS)

- In "natural" SUSY models, a light stop is favored to address naturalness problem
 - But in models with "R-Parity Violation" (RPV), stop gains large lifetime from small coupling
 - Squarks will hadronize to a color singlet ("R-Hadron")
 - Complex problems in simulating production, propagation, decay [<u>ATL-PHYS-</u> <u>PUB-2019-019</u>]
 NEW!

DISPLACED VERTICES

 \sqrt{s} =13 TeV, L=32.8 fb⁻¹, All Reconstructed Vertices If LLP decays in tracking volume, 150 reconstruct displaced vertex DV y [mm] 3000 **ATLAS** 100 Dedicated displaced tracking 2500 [ATL-PHYS-PUB-2017-014] 50 2000 and displaced vertexing 0 1500 [ATL-PHYS-PUB-2019-013] NEW! -50 1000 No SM Background! Just instrumental backgrounds -100 500 -150 -100 -50 Requires detailed material map to 50 100 150 0 veto backgrounds DV x [mm]

14

DISPLACED VERTICES

 \sqrt{s} =13 TeV, L=32.8 fb⁻¹, All Reconstructed Vertices If LLP decays in tracking volume, 150 reconstruct displaced vertex DV y [mm] 3000 **ATLAS** 100 Dedicated displaced tracking 2500 [ATL-PHYS-PUB-2017-014] 50 2000 and displaced vertexing 0 1500 [ATL-PHYS-PUB-2019-013] NEW! -50 1000 No SM Background! Just instrumental backgrounds -100 500 -150 -100 -50 Requires detailed material map to 50 100 150 0 veto backgrounds DV x [mm]

DISPLACED VTX + MUON [<u>ATLAS-CONF-2019-006</u>]

- Full Run-2 Analysis! 136 fb⁻¹
- Background estimation uses
 - BG-like DVs (e.g. hadronic interactions)
 - BG-like muons (e.g. cosmic rays)
- Expected BG:
 0.43 ± 0.16 (stat) ± 0.16 (syst) events
- Observe **0 events**

NEW!

BG-like muons (e.g. cosmic rays) Expected BG: 0.43 ± 0.16 (stat) ± 0.16 (syst) events

Observe **0 events** Strictest mass limit from any stop search ever (including conventional analyses!)

Event

Full Run-2 Analysis! 136 fb-1 Lifetime sensitivity largely set by Background estimation uses

- - BG-like DVs (e.g. physical tracker size

DISPLACED VTX + MUON TATLAS-CONF-2019-006

 10^{2}

 10°

10

m_{DV} [GeV]

DISPLACED DILEPTON VERTEX [<u>ARXIV: 1907.10037</u>]

- Or look for displaced dilepton vertices
- Primary background from cosmics
 - Smaller contributions from accidental crossings,
 - Heavy-flavor effects
- Expected BG:
 0.27 ± 0.17 events
- Observe **0 events**
- Limits set on RPV models with squark masses up to 1.6 TeV

FUTURE PROSPECTS FOR LONG-LIVED PARTICLES WITH ATLAS

For more details on upgrade prospects for ATLAS, see Monday's talk from Francesca Pastore

LHC 27 km

UISS

RANCI

CMS

Benefit from lumi more than most!

HL-LHC

ATLAS RUN-3 WILL HAVE NEW TRIGGERING CAPABILITIES WHICH MAY HELP LLP SEARCHES

LOTS OF DETECTOR UPGRADES FOR ATLAS@HL-LHC TO HANDLE THIS LUMINOSITY

E.G. INNER TRACKER COMPLETELY REPLACED BY "ITK"

DISPLACED VTX + MISSING E_T [<u>ATL-PHYS-PUB-2018-033</u>]

- Long-lived gluinos (e.g. Split-SUSY Models)
 - Signature of displaced vertices + large missing E_T
- Improved tracker gives sensitivity increase for larger lifetimes
- 5-sigma gluino discovery potential to 2.9 TeV!

DISAPPEARING TRACKS [ATL-PHYS-PUB-2018-031]

- "AMSB" SUSY models often predict long-lived charged particles
- With 3000 fb⁻¹, edge of current 95% CL exclusion is 5σ discoverable!
- Great prospects, but new techniques could give even more improvements!

NEW!

• [ATL-PHYS-PUB-2019-011]

For more details on upgrade prospects for ATLAS, see Monday's talk from Francesca Pastore

For more details on our entire LLP search program, <u>see our many public results</u>

Thanks for your attention!

Because the time of decay is exponential (in rest frame), getting the largest, closest detector is important.

Requiring pair-produced LLPs to both decay in far away detectors doesn't make sense...

