

ATLAS Results on tt+Higgs

Bernd Stelzer (SFU) on behalf of the ATLAS collaboration ICNFP 2019, Aug 24th, Crete Greece

Link to event display 1

Introduction – Higgs boson production at the LHC

Cross sections for $m_H = 125 \text{ GeV}, \sqrt{s} = 13 \text{ TeV}$

Introduction – Higgs Boson Interactions

Key Run 2 milestones accomplished - Discovery of 3rd generation Higgs boson Yukawas!

Introduction – Motivation for ttH Measurement

- Top quark (t \rightarrow Wb) and Higgs boson decays (H \rightarrow X) result in rich spectrum of signatures
- Broad range of analyses explored to capture these complex final states with many objects: Leptons [*e*, μ, τ_{had}], jets, *b*-jets, photons, ET_{miss}
 - \rightarrow Need good understanding of reconstructed objects
 - \rightarrow Good efficiency (excellent detector performance, hard work of performance groups!)
- ATLAS explored all of these multiple final states given small ttH production rate

Combination of all these analyses for best sensitivity and cross-check

ATLAS ttH Analyses

ttH - Multilepton (H→WW*, ZZ* and H→ττ)	36 fb ⁻¹	Phys. Rev. D 97, 072003
ttH (H →bb)	36 fb ⁻¹	Phys. Rev. D 97, 072016
Combination	36 - 80 fb ⁻¹	Phys. Lett. B784 (2018) 173-191
ttH (H→γγ) - Diphoton	140 fb ⁻¹	ATLAS-CONF-2019-004
ttH (H→ZZ*→4I)	140 fb ⁻¹	ATLAS-CONF-2019-025

ATLAS casts a wide net, with analyses designed to target the various Higgs boson decays

ttH ($H \rightarrow$ bb) Analysis

- ttH(bb) most abundant (BR=58%), but large irreducible background with big theoretical uncertainty (from tt+bb)
- Higgs boson reconstruction possible, but challenging due to b_{jet}, b_{parton} combinatorics (b_{jets} from Higgs and top quark decay)
- Challenge: Modeling of tt+HeavyFlavor background
- Define various signal (SRs) and data control regions (CRs)

ttH

🔲 tī + V

<u></u>tt̄ + ≥1c

Total unc.

300

m_{bb}^{Higgs} (reco BDT) [GeV]

350

Analysis Strategy --- Cascade of MVAs

Categorization:

- 10 CRs normalizing backgrounds
- 9 SRs to enhance purity, #jets, b-tagging (4 working points)

Reconstruction:

- Reco-BDT
- Matrix element method
- Likelihood discriminant

100

150

Data

⊡tī + light

∎tī + ≥1b

--- ttH (norm)

--- Pre-Fit Bkad.

Non-tt

Classification

- BDT ttH vs tt-background
- Include event kinematics, b-tag info, reco MVAs

ttH (H→bb) Analysis

Signal extraction:

Binned profile likelihood fit to all signal and control regions. Normalisation of $tt \ge lb$ and $tt \ge lc$ left free-floating in the fit.

ttH – Multilepton Analysis

- Targeting: ttH H→WW*→(lvlv, lvqq), H→ττ and H→ZZ*(→ llvv, llqq) decays
- With leptonic tt decays, this leads to distinct signatures
- 7 orthogonal channels categorised by multiplicity of e/μ and hadronic tau (τ_{had}) candidates, b-jet multiplicity
- Develop CRs to normalize backgrounds
- Use of BDTs in SRs to further improve purity
- Analysis does not rely on Higgs mass reconstruction

Event categorization based on #leptons and $\#\tau_{had}$

ttH - Multilepton Analysis

Main backgrounds:

- Reducible: Non-prompt e, μ and hadronic τ and prompt light leptons with misidentified charge
- Develop object level discrimination to reduce these backgrounds
 - ightarrow Isolation BDT to reduce non-prompt background
 - \rightarrow Charge mis-ID BDT
- Irreducible: ttV and VV estimated from MC and validated in data.

ttH – Multilepton Analysis

ttH – Diphoton Analysis

ATLAS-CONF-2019-004

13

- Very small rate !!
- Remember $\sigma_{ttH} = 1\% \sigma_{ggF}$ and BR(H $\rightarrow \gamma\gamma) = 0.2\%$
- Select two isolated photons with 105 GeV < $M_{_{YY}} <$ 160 GeV
- Additional selection using MVAs for hadronic and leptonic tt decay to improve purity (enabling this analysis)

Very similar strategy for 79.8 fb⁻¹ and full Run 2 (139 fb⁻¹) analysis

- Split sample by leptonic (≥1ℓ) and hadronic x(0ℓ) ttbar decays (incl. b-tag)
- Boosted Decision Trees (BDT) to enhance purity in sample
- BDT input based on lepton, jet, photon 4-vectors (trained massindependent), E_T^{miss} and b-tag

ttH – Diphoton Analysis

- Very small rate !!
- Remember $\sigma_{ttH} = 1\% \sigma_{ggF}$ and BR(H $\rightarrow \gamma\gamma) = 0.2\%$
- Select two isolated photons with 105 GeV < $M_{_{YY}} <$ 160 GeV
- Additional selection using MVAs for hadronic and leptonic tt decay to improve purity (enabling this analysis)

Categorize events by BDT score (signal purity)

- Select 4 hadronic (HAD1-HAD4) and 3 leptonic (LEP1-LEP3) categories
- BDT sub-samples optimized for best sensitivity
- Low BDT score events are rejected

ttH – Diphoton Analysis

• Photon energy resolution, scale (±0.06)

ttH – Diphoton Analysis (80 fb⁻¹ result)

Signal extraction

Performed by simultaneous **unbinned maximum likelihood fit** of **m**_{γγ} spectra (105-160 GeV) in all **7 categories**

- H mass constrained
- **Signal and background** modeled with analytic functions

2.5 GeV

Events /

- Cont. Bkg.

120

100

80

60

40

20

20

Data

Continuum Background

Total Background

Signal + Background

ATLAS

All categories

 $\sqrt{s} = 13 \text{ TeV}, 79.8 \text{ fb}^{-1}$

m_H = 125.09 GeV

Signal extraction

Performed by simultaneous **unbinned maximum likelihood fit** of **m**_{γγ} spectra (105-160 GeV) in all **7 categories**

- H mass constrained
- **Signal and background** modeled with analytic functions
- Analyze full Run-2 dataset with updated photon-ID, energy and jet calibrations

2019: First observation of single ttH channel with 4.9σ significance (4.2σ exp)

$$\sigma_{\rm ttH} \times B_{\gamma\gamma} = 1.59 \ ^{+0.38}_{-0.36} ({\rm stat.}) \ ^{+0.15}_{-0.12} ({\rm exp.}) \ ^{+0.15}_{-0.11} ({\rm theo.}) \ {\rm fb}$$

$$\frac{\sigma_{\rm ttH}}{\sigma_{\rm ttH}^{\rm SM}} = 1.38 \ \pm^{0.33}_{0.31} \ ({\rm Stat.}) \ \pm^{0.13}_{0.11} \ ({\rm exp.}) \ \pm^{0.22}_{0.14} \ ({\rm theo.})$$

Note:

- Events weighted by purity
- Non-ttH Higgs boson processes from MC samples normalized to their expected SM cross sections times the expected SM branching ratio to di-photons with a Higgs boson mass of 125 GeV

Analysis still stats limited!

2018: Combining 4 analyses: 6.30 Observation (5.10 Exp)

Some details:

- Theory uncertainties correlated, experimental uncertainties mostly uncorrelated
- Other Higgs boson production modes constrained to Standard Model prediction
- Assume Standard Model branching ratios

0000000

0000000

H

Phys. Lett. B 784 (2018) 173

Total ttH cross-section

Cross-section extracted assuming SM Higgs branching fractions

0000000

ttH (H \rightarrow ZZ* \rightarrow 4I) Analysis

- New ATLAS $H \rightarrow ZZ^* \rightarrow 4I$ analysis targeting all production modes
- Select two same-flavor lepton pairs in Higgs mass window
- Various event categorization depending on production mode
- For ttH, extremely small rate [$BR(H \rightarrow ZZ^* \rightarrow 4I) = 0.0124\%$]
- 79.8 fb⁻¹: similar strategy but only focusing on ttH
 - \rightarrow Expected significance **1.2** σ , no events were observed

Observed

events

Total expected

events

 1.32 ± 0.17

 0.42 ± 0.04

Signal extraction

Maximum likelihood fit to NN output

 Most important ttV backgrounds constrained from control region (selected based on (b)-jets, MET, M_{4I})

Reconstructed

event category

ttH-Had-enriched

ttH-Lep-enriched

Measurement of top-Higgs Yukawa Coupling (up to 80 fb⁻¹)

Assuming only Standard Model particles

Allowing New Particles in the Loops

$$\kappa_{top} = y_t / y_t^{SM} = 1.14^{+0.19}_{-0.18}$$

- Analysis using up to 80 fb⁻¹
- Included single parameter $\mathsf{B}_{\mathsf{BSM}}$ in model
- Constrains BSM contribution in the loop (ATLAS evaluates 2HDM and MSSM as benchmark models)
- Consistent with SM Higgs boson coupling

Conclusions

- ATLAS has established observation of ttH production 6.3σ (5.1σ expected) by combining the H→bb, multilepton and diphoton channels
- Recent ATLAS ttH observation (4.9 σ) using H \rightarrow $\gamma\gamma$ *channel* alone
- Top-Higgs Yukawa coupling consistent with SM (within uncertainties)
- Future measurements of tH production will add complementary information
- Discovery of all 3rd generation Higgs boson Yukawas (together with $H \rightarrow bb$, $\tau \tau$)

Looking into the future

- Upgrades for the HL-LHC are underway
- HL-LHC Higgs physics shows impressive goals
 - ttH (H→bb) to 7-11% (requires ×2-3 improvement in tt+HF uncertainty, ongoing work in HXSWG)
 - ttH (H \rightarrow multilepton) measured to 7-11% ($\Delta\mu$)
 - No projection for ttH ($H \rightarrow \gamma \gamma$) yet
- New ideas will continue to push the frontiers of particle physics at the LHC.

CERN-LPCC-2018-04 February 4, 2019

Higgs Physics at the HL-LHC and HE-LHC

Report from Working Group 2 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

Convenors: M. Cepeda^{1,2}, S. Gon³, P. Ilten⁴, M. Kado^{5,6,7}, F. Riva⁸

Contributors:

Jan

p-ph]

```
R. Abdul Khalek<sup>9,10</sup>, A. Aboubrahim<sup>11</sup>, J. Alimena<sup>12</sup>, S. Alioli<sup>13,13</sup>, A. Alves<sup>14</sup>, C.
Asawatangtrakuldee<sup>15</sup>, A. Katou<sup>10,17</sup>, P. Azi<sup>18</sup>, S. Baile<sup>19</sup>, S. Banerje<sup>20</sup>, E.L. Barberio<sup>21</sup>, D.
Barduccl<sup>16</sup>, G. Barone<sup>22</sup>, M. Bauer<sup>20</sup>, C. Bautista<sup>23</sup>, P. Bechtle<sup>24</sup>, K. Becker<sup>25</sup>, A. Benagia<sup>20</sup>, M.
Bengala<sup>27</sup>, N. Berger<sup>26</sup>, C. Bertella<sup>26</sup>, A. Bethan<sup>30</sup>, A. Betti<sup>24</sup>, A. Biekotte<sup>21</sup>, F. Bishara<sup>15</sup>, D. Bloch<sup>32</sup>,
P. Bokan<sup>33</sup>, O. Bondu<sup>34</sup>, M. Bonvin<sup>6</sup>, L. Borgonov<sup>35,36</sup>, M. Borsato<sup>37</sup>, S. Boselli<sup>38</sup>, S.
Braihant-Giacomelli<sup>25,36</sup>, G. Buchalla<sup>29</sup>, L. Cadamuro<sup>10</sup>, C. Caillol<sup>11</sup>, A. Calandri<sup>12,43</sup>, A. Calderon
Tazon<sup>44</sup>, J.M. Campbell<sup>45</sup>, F. Caola<sup>20</sup>, M. Capozi<sup>16</sup>, M. Carena<sup>35,47</sup>, C.M. Carloni Calame<sup>18</sup>, A.
Carrona<sup>39</sup>, E. Carquin<sup>50</sup>, A. Carvalho Annunes De Oliveira<sup>51</sup>, A. Castaneda Hermander<sup>25</sup>, O. Cata<sup>33</sup>, A. Celis<sup>54</sup>, A. Certis<sup>55</sup>, F. Ceruni<sup>50,57</sup>, G.S. Chahal<sup>58,20</sup>, A. Chakrahorty<sup>59</sup>, G. Chaudhary<sup>00</sup>, Y. Chen<sup>61</sup>
```

24

Thank you

More Information: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults