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Assumptions of Physics

• This talk is part of a broader project called Assumptions of Physics
(see http://assumptionsofphysics.org/)

• The aim of the project is to find a handful of physical principles and 
assumptions from which the basic laws of physics can be derived

• To do that we want to develop a general mathematical theory of 
experimental science: the theory that studies scientific theories
• A formal framework that forces us to clarify our assumptions
• From those assumptions the mathematical objects are derived
• Each mathematical object has a clear physical meaning and no object is unphysical
• Gives us concepts and tools that span across different disciplines
• Allows us to explore what happens when the assumptions fail, possibly leading to 

new physics ideas
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Experimental verifiability
leads to topological spaces, sigma-algebras, …

…

Infinitesimal reducibility
leads to classical phase space

Irreducibility
leads to quantum state space

Deterministic and reversible 
evolution

leads to isomorphism on state space

Non-reversible evolution

Kinematic equivalence
leads to massive particles

Hamilton’s equations
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𝑑𝑡
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𝜕𝐻
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Euler-Lagrange equations

𝛿∫ 𝐿 𝑞, ሶ𝑞, 𝑡 = 0

Schroedinger equation

𝚤ℏ
𝜕

𝜕𝑡
𝜓 = 𝐻𝜓

Thermodynamics

General mathematical theory
of experimental science

State-level assumptions

Process-level assumptions



Mathematical structure for space-time

• Riemannian manifold

• Differentiable manifold + inner product

• Topological manifold + differentiable structure

• Ordered topological space + locally ℝ𝑛

• Topological space + order topology

• If we want to understand why (i.e. under what conditions) space-time 
has the structure it has, we first need to understand why (i.e. under 
what conditions) it is a topological space, it has an order topology, …
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Geometry (lengths and angles) starts here: 
most fundamental structures are not 
geometrical



Simple things first

• A similar hierarchy is present for other mathematical structures used 
in physics
• Hilbert space – Inner product space + closure under Cauchy sequences –

Vector space + inner product – … 

• If we want true understanding, then we need to understand the 
simpler structure first
• This is what our project, Assumptions of Physics, is about
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Outline

• In this talk we will focus on topology and order. We will:
• Show that topologies naturally emerge from requiring experimental 

verifiability
• Show that an order topology corresponds to experimental verifiability of 

quantities: outcomes than can be smaller, greater or equal to others
• Then we need to understand how quantities are constructed from 

experimental verifiability
• That is, find a set of necessary and sufficient conditions under which experimental 

verifiability gives us an order topology

• Argue that, in the end, those conditions are untenable at Planck scale, and 
that ordering cannot be experimentally defined

• Conclude that all that is built on top of an order topology (manifolds, 
differentiable structures, inner product) fails to be well defined at Planck scale
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Verifiable statements

• The most fundamental math structures are from logic and set theory
• All other structures are based on that

• For science, we want to extend these with experimental verifiability

• Our fundamental object will be a verifiable statement: an assertion 
for which we have (in principle) an experimental test that, if the 
statement is true, terminates successfully in a finite amount of time

• Verifiable statements do not follow standard Boolean logic:
• We may verify “there is extra-terrestrial life” but not its negation “there is no 

extra-terrestrial life”

• No negation in general, finite conjunction, countable (infinite) disjunction
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What is a topology?

• Given a set 𝑋, a topology 𝑇 ⊆ 2𝑋 is a collection of subsets of 𝑋 that:
• It contains 𝑋 and ∅

• In general, not closed under complement

• It is closed under finite intersection and arbitrary (infinite) union

• How do we get to this in physics?
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what is consistent (i.e. the possibilities) and what is
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Examples

• “the mass of the photon is less than 10−13eV” is verifiable and 
corresponds to an open set (a set in the topology)

• “the mass of the photon is exactly 0 eV” is not verifiable and is not an 
open set (not a set in the topology)
• However, it is falsifiable and corresponds to a closed set (the complement is in 

the topology)

• Topological concepts (second countability, Hausdorff spaces, 
interior/exterior/boundary, …) can be better understood in terms of 
experimental verification
• They are not some abstract mathematical thing: they are physically 

meaningful
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Quantities

• We can define a quantity as a measurable property of a system that 
has a magnitude: can be compared to another of the same kind and 
found to be greater or smaller

• Mathematically a quantity is formed by:
• a set 𝑄

• a linear (total) ordering ≤:𝑄 × 𝑄 → 𝔹

• the order topology generated by the linear ordering, whose basis elements 
are of the form −∞, 𝑞 and 𝑞,+∞ ; that is, we can always tell 
experimentally whether something is more or less than something else
• equality, in general, is not experimentally testable: for continuous quantities corresponds 

to infinite precision measurements
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Constructing quantities and references

• The question is: how do we operationally construct quantities? How can 
we model that appropriately?

• We start with the idea of a reference: something physical that partitions 
our range into a before, on, and after
• E.g. a line on a ruler, the tick of a clock, a standard weight for a balance scale, a 

threshold on an A/D converter

• Mathematically, a reference is a tuple of three statements b/o/a; only 
before and after are required to be experimentally verifiable
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Constructing quantities and references

• Problem 1 - In general, before/on/after are not mutually exclusive
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F F T

T T F

F T T

T T T

In this case, the possibilities of the domain cannot correspond to distinct values 



Strict references

• We say a reference is strict if before/on/after are mutually exclusive

• If the extent of what we measure is smaller than the extent of our 
reference, then we can always assume our references are strict
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Multiple references

• Problem 2 - To construct a reference scale we need multiple 
references, but in general these would not construct a linear order

• We need to define what it means for
references to be aligned purely on the
logical relationship between statements
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Ordered references

• We can say that reference 1 is before reference 2
if whenever we find something before or
on the other, it must be before the second

• More precisely, if 𝑏1 ∨ 𝑜1 𝑜2 ∨ 𝑎2
• Means the statements are incompatible,

they can’t be true at the same time

• Note how 𝑏1 ≼ ¬𝑎1 ≼ 𝑏2 ≼ ¬𝑎2
• Where 𝑎 ≼ 𝑏 (𝑎 is narrower than 𝑏) means

that if 𝑎 then 𝑏 must be true as well
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Aligned references

• More in general, we can say that two references are aligned if the 
before and not-after statement can be ordered by narrowness

• For example, 𝑏1 ≼ 𝑏2 ≼ ¬𝑎1 ≼ 𝑎2
• ≼ Means that if the first statement is true

then the second statement will be true as well
• That is, the first statement is narrower, more specific

• Here we see how the ordering of references is
related to the logical ordering defined by the
specificity (narrowness) of the statements

• We need our references to be aligned if we want
to construct a linear ordering
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Resolving the overlaps

• Problem 3a - If two different references overlap, we can’t say one is 
before the other: we can’t fully resolve the linear order

• Problem 3b - Conversely, if two reference don’t overlap and there can 
be something in between, we must be able to put a reference there

• We always need a way, then, to find (possibly finer) references to 
explore the full space
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Refinable references

• Conceptually, a set of references is refinable if we can solve the 
previous problems:
• if two references overlap we can always refine them to two that do not 

overlap

• if two ordered references are not consecutive (there can be something in 
between) we can always construct a reference in the middle

• Mathematically is not complicated, but is tedious and not so 
interesting

• With these definitions and some work…
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Reference ordering theorem

• An experimental domain is fully characterized by a quantity if and 
only if it can be generated by a set of refinable aligned strict 
references

Gabriele Carcassi - University of Michigan 28

Property of references Meaning

Strict The quantity is always only before/on/after the reference. This can be assumed if the extent of 
what we measure is smaller than the extent of the reference.

Aligned The before/after statement have an ordering in term of narrowness (specificity).

Necessary to have a coherent before and after over the whole range.

Refinable If we have overlaps, we can always construct finer references.

Necessary to create smallest mutually exclusive cases that correspond to the values.



Integers and reals

• If we assume that between two non-overlapping references we can 
only put finitely many references, then the ordering is the one of the 
integers
• Equality can be tested as well

• If we assume that between two non-overlapping references we can 
always put another, then the ordering is the one of the reals
• Equality cannot be tested in this case

• These are the only two orderings that are homogeneous, where all 
references have the same properties
• And that is why they are the most fundamental in physics

Gabriele Carcassi - University of Michigan 29



Are these requirements tenable at Planck scale?
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Property of 
references

Meaning Problems

Strict The quantity is always only before/on/after the 
reference. This can be assumed if the extent of 
what we measure is smaller than the reference.

Objects measured and references are ultimately of 
the same kind; their extent should be comparable

Aligned The before/after statements have an ordering in 
term of narrowness (specificity).

Necessary to have a coherent before and after over 
the whole range.

If indistinguishable particles are the smallest 
references and are placed very close to each other, 
it is not clear how can be sure they haven’t 
switched

Refinable If we have overlaps, we can always construct finer 
references.

Necessary to create smallest mutually exclusive 
cases that correspond to the values.

The whole point of reaching Planck length is that 
we cannot further refine our references



Are these requirements tenable at Planck scale?

• If we take the quantum nature of the references into consideration, 
all the requirements seem untenable
• Note that all three are necessary: if even only one fails we have a problem

• What fails is ordering itself
• Is not that the real numbers need to be changed to rationals or integers: we 

don’t have numbers to begin with
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Failure of ordering

• Riemannian manifold

• Differentiable manifold + inner product

• Topological manifold + differentiable structure

• Ordered topological space + locally ℝ𝑛

• Topological space + order topology

• If ordering fails, all the structures that are based on ordering fail as 
well. No manifold, no differentiability, no calculus, no inner product, 
no geometry. We need to develop a new chain of mathematical tools.
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Conclusion

• Topology, the simplest mathematical structure needed for geometry, 
has a clear well-defined meaning in terms of experimental verifiability
• This is appropriate as experimental verifiability is the foundation of science

• Order topology, the next required structure, formally captures the 
ability to experimentally compare quantities
• The ordering is generated by logical relationships: if “x<8” then also “x<10”

• For real numbers, the requirements can only be satisfied ideally, most 
likely leading to a breakdown at Planck scale
• The idea that our “measurement device” is “classical” is baked into the very 

nature of the order topology, which can’t then be undone up the stack
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Conclusion

• The standard mathematical toolchain (i.e. manifolds, 
differentiability/integration, differential geometry, Riemannian 
geometry, …) needs to be rethought
• The idea that we can take something and divide it into infinitesimal 

contributions is intrinsically classical

• In the same way that the geometry of space-time (i.e. the metric 
tensor) depends on the energy/mass distribution, the topology may 
depend on it as well

• The foundations of physics lie in understanding the most basic 
mathematical structures, their physical significance and how they can 
be generalized
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Proc. 54 (2019) pp. 271-282

http://assumptionsofphysics.org/

