Space-time structure may be
topological and not geometrical

Gabriele Carcassi and Christine Aidala
August 26, 2019

UNIVERSITY OF International Conference on New Frontiers in Physics
MICHIGAN




Assumptions of Physics

e This talk is part of a broader project called Assumptions of Physics
(see http://assumptionsofphysics.org/)

* The aim of the project is to find a handful of physical principles and
assumptions from which the basic laws of physics can be derived

* To do that we want to develop a general mathematical theory of
experimental science: the theory that studies scientific theories
* A formal framework that forces us to clarify our assumptions
From those assumptions the mathematical objects are derived
Each mathematical object has a clear physical meaning and no object is unphysical
Gives us concepts and tools that span across different disciplines

Allows us to explore what happens when the assumptions fail, possibly leading to
new physics ideas


http://assumptionsofphysics.org/

General mathematical theory_ Experimental verifiability
of experimental science _ .
leads to topological spaces, sigma-algebras, ...

State-level assumptions

Infinitesimal reducibility Irreducibility

leads to classical phase space leads to quantum state space

Process-level assumptions
Hamilton’s equations

Deterministic and reversible Schroedinger equation

evolution .
leads to isomorphism on state space lhalp = Hy

Non-reversible evolution Thermodynamics

Euler-Lagrange equations

| Kinematic equivalence
6f L(q,q,t) =0 leads to massive particles
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Mathematical structure for space-time

e Riemannian manifold

* Differentiable manifold + inner product

* Topological manifold + differentiable structure
* Ordered topological space + locally R"

* Topological space + order topology

* If we want to understand why (i.e. under what conditions) space-time
has the structure it has, we first need to understand why (i.e. under
what conditions) it is a topological space, it has an order topology, ...



Mathematical structure for space-time

e Riemannian manifold Geometry (lengths and angles) starts here:

most fundamental structures are not

* Differentiable manifold +‘inner product“/ geometrical

* Topological manifold + differentiable structure
* Ordered topological space + locally R"
* Topological space + order topology

* If we want to understand why (i.e. under what conditions) space-time
has the structure it has, we first need to understand why (i.e. under
what conditions) it is a topological space, it has an order topology, ...



Simple things first

* A similar hierarchy is present for other mathematical structures used
in physics
* Hilbert space — Inner product space + closure under Cauchy sequences —
Vector space + inner product — ...

* If we want true understanding, then we need to understand the
simpler structure first

* This is what our project, Assumptions of Physics, is about



Outline

* In this talk we will focus on topology and order. We will:
* Show that topologies naturally emerge from requiring experimental
verifiability
* Show that an order topology corresponds to experimental verifiability of
guantities: outcomes than can be smaller, greater or equal to others
* Then we need to understand how quantities are constructed from
experimental verifiability

* That s, find a set of necessary and sufficient conditions under which experimental
verifiability gives us an order topology

* Argue that, in the end, those conditions are untenable at Planck scale, and
that ordering cannot be experimentally defined

e Conclude that all that is built on top of an order topology (manifolds,
differentiable structures, inner product) fails to be well defined at Planck scale



Verifiable statements

* The most fundamental math structures are from logic and set theory
* All other structures are based on that

* For science, we want to extend these with experimental verifiability

* Our fundamental object will be a verifiable statement: an assertion
for which we have (in principle) an experimental test that, if the
statement is true, terminates successfully in a finite amount of time

* Verifiable statements do not follow standard Boolean logic:

* We may verify “there is extra-terrestrial life” but not its negation “there is no
extra-terrestrial life”

* No negation in general, finite conjunction, countable (infinite) disjunction



What is a topology?

* Given a set X, a topology T € 2% is a collection of subsets of X that:
* It contains X and @
* In general, not closed under complement
* |t is closed under finite intersection and arbitrary (infinite) union

* How do we get to this in physics?



Start with a countable set of verifiable statements
(the most we can test experimentally). We call this

a basis.
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Verifiable statements Dy

€1 e ée3 Ss1=ej1Vey S, = ejA\eg
F F F . F F
F T F T F
] E F

The experimental domain Dy induces a natural topology
on the set of possibilities X

The role of logic (and math) in science is to capture
what is consistent (i.e. the possibilities) and what is
verifiable (i.e. the verifiable statements)

D
(7]
Y
=
S
(7]
(7]
)
o
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Examples

* “the mass of the photon is less than 10~ 13eV” is verifiable and
corresponds to an open set (a set in the topology)

* “the mass of the photon is exactly 0 eV” is not verifiable and is not an
open set (not a set in the topology)

* However, it is falsifiable and corresponds to a closed set (the complement is in
the topology)

* Topological concepts (second countability, Hausdorff spaces,
interior/exterior/boundary, ...) can be better understood in terms of
experimental verification

* They are not some abstract mathematical thing: they are physically
meaningful



Quantities

* We can define a quantity as a measurable property of a system that
has a magnitude: can be compared to another of the same kind and
found to be greater or smaller

 Mathematically a quantity is formed by:

e aset(
* alinear (total) ordering <:Q X Q —» B

* the order topology generated by the linear ordering, whose basis elements
are of the form (—o0, g) and (g, +0); that is, we can always tell
experimentally whether something is more or less than something else

* equality, in general, is not experimentally testable: for continuous quantities corresponds
to infinite precision measurements



Constructing quantities and references

* The question is: how do we operationally construct quantities? How can
we model that appropriately?

* We start with the idea of a reference: something physical that partitions
our range into a before, on, and after

 E.g. aline on aruler, the tick of a clock, a standard weight for a balance scale, a
threshold on an A/D converter

before after

on

* Mathematically, a reference is a tuple of three statements b/o/a; only
before and after are required to be experimentally verifiable



Constructing quantities and references

* Problem 1 - In general, before/on/after are not mutually exclusive

T F F O

F T F

F F T D
T T F

F T T

T T T

In this case, the possibilities of the domain cannot correspond to distinct values

Gabriele Carcassi - University of Michigan 20



Strict references

* We say a reference is strict if before/on/after are mutually exclusive

T F F O
F T F
F F T D

e |If the extent of what we measure is smaller than the extent of our
reference, then we can always assume our references are strict

Gabriele Carcassi - University of Michigan
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Multiple references

* Problem 2 - To construct a reference scale we need multiple
references, but in general these would not construct a linear order

* \We need to define what it means for before after

references to be aligned purely on the
logical relationship between statements




Ordered references

* We can say that reference 1 is before reference 2
if whenever we find something before or
on the other, it must be before the second

* More precisely, if b; Vo, 4 0, V a,
« A Means the statements are incompatible,
they can’t be true at the same time
* Note how by < —a4 < by < 14,

* Where a < b (a is narrower than b) means
that if a then b must be true as well ,
1




Aligned references

* More in general, we can say that two references are aligned if the
before and not-after statement can be ordered by narrowness

* For example, b; < b, < —a4 < a,

b
< Means that if the first statement is true :

02

A

then the second statement will be true as well
* That is, the first statement is narrower, more specific

* Here we see how the ordering of references is
related to the logical ordering defined by the
specificity (narrowness) of the statements

* We need our references to be aligned if we want
to construct a linear ordering b,

A

Gabriele Carcassi - University of Michigan
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Resolving the overlaps

* Problem 3a - If two different references overlap, we can’t say one is
before the other: we can’t fully resolve the linear order

* Problem 3b - Conversely, if two reference don’t overlap and there can
be something in between, we must be able to put a reference there

* We always need a way, then, to find (possibly finer) references to
explore the full space



Refinable references

* Conceptually, a set of references is refinable if we can solve the
previous problems:

* if two references overlap we can always refine them to two that do not
overlap

* if two ordered references are not consecutive (there can be something in
between) we can always construct a reference in the middle

* Mathematically is not complicated, but is tedious and not so
Interesting

 With these definitions and some work...
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Proof. By definition, we have -ba -a < 0 and by 1.23 ~(-ba-a)v

vavo. O For transitivity, if ry < 2, we have by v 01 # 03 v 2; and therefore ~(b; vor) 7 03 vz
by 1.23. Since by vorvar = T, we have a1 = ~(bi vor). Similarly if r2 < rs we'll have
az = ~(b2v02) * 03vas. Putting it all together ~(b1vor) ¥ 02vaz > 22 = ~(b2vez) > 03vas,
which moans by v o1 # 03 vas. o

Definition 3.19. A reference r1 = (b1,01,21) i finer than another reference vz = (b2, 02,20)
o CHAPTER 3. PROPERTIES AND QUANTTTIES 32 QUANTITIES AND ORDERING 5 ifbi=bo, 01 %02 and a1 xaz.

the possthilities themselves can be ordered, and bow this ordartng. i the end, b uniquely that allows us to map statoments o numbers and vies-versa, Corollary $.20. The finer relationship between references is a partial order.

charactorizod by statinent narrowness: 10 bs ko than 42 bocause the quenity is lexs then A wo wan Corollary 3.24. The relationship 1y < 1y, defined to be true if m < vy ormy = 1o, is 0
107 1s marrower than *the qunul' s lexs then 427, that are fully charactertzed by a quanity. For example, tho domain for the mass of a sy Proof. As the finer relationship is direetly based on narrowness, it inherits its reflexivity, partial order.
As the defining characteristic for a quantity i the ability 10 compare its values, then the will be fully characterizod by a real numbor greator than or equal 10 760, Each pos il A e e P A e e &

As we saw, two references may overlap and therefore an ordering between them cannot. be
defined. But reforences can overlap in different; ways.

Suppose we have a vertical line one millimeter thick and call the loft side the part before
the line and the right side the part after. We can have another vertical line of the same
thickness overlapping but we can also have a horizental line which will also, at some point,
overlap. The case of the two vertical lines is something that, through finding finer reforences,
can be given a linear order. The case of the vertical and herizontal line, insiead, cannot
Intuitively, the vertical lines are aligned while the horizontal and vertical are not.

Coneeptually, the overlapping vertical lines are aligned becanse we can imagine narrower
lines around the borders, and those lines will be ordered references in the above sense: each
line would e completely before or after, without intersection. This means that the before and
not-after statements of one reference are either narrower or broader than the before and not-
aftor statements of the other. That is, alignment can also be defined in terms of narrowness
of statements.

Note that if a reference s strict, before and after statements are not. compatible and

valoes musst be ordered 1n some fashion from smaller (o groator. Therefore, given two different
walues, one mast be before the other. Mathematically, we call linear order an order with such unit, say in Kg As the values of the mass are ordered, we can also say that the possibilities
 characteritic = wo can Imagine the ekmaents posiionod. along a lie. Noto that voctors thoretves e ot o the syster is 1 Ky procedes the mass of the
aro ot hneasly ordored: 0o diretion 1 greate than the otbe. Thereore, i this contt, & sytem s 2 Ky". This ondering o the possihiltos wil bo ke 10 the natural topology
woctar will nos strietly be a quancity but & collection of quantitios? “the maxs of the system 1 less than 2 Ko, the disguction of all possthilities that come befor
W aleo havo 1o define how this ode can be expertmentally verted. The s i that we » particulas pasdbilty, b a verfisblo statoment.
o, st Jest, b abl 10 verty that tho value of & given quantty i befor or ater a st Wo call a nasural order for the paeshilty a Boear oder o them such that the order . “ : . .
valuse, This allows s to construct bounds such as w';.wm(.l/m..mm. i 511205 keV” topalogy is the natural twpology. Anrx-:tlmmulmnmlslulhchuuhrml by a quantity ‘can be made strict by replacing it with ~bA-a. This 1s passible because o Is not required to
which we take 10 be equivalont 10 “the mass of the electron is more than 510.5 keV but leas 1f and ondy If 1t s naturally ordered and that quantity is ordered I the same way: It 1s onder e verifiable. The before (and after) statements would need to be replaced with statements
than 511.8 ke V" For tatogers, this s allows us o verify pasticular musbers s “he arth cmorpie. I othee woeds, we ca oy wign & quenthy o as sspermsatal dossain i & like b A ~a, which are not in general veriiable because of the negation.
has one natural nuﬂﬂ( s oquivalent 1 the “the carth Aas more than serv natural satellites alroady has & natural ordering of the same type.
e e (e e e e o by ; "To measure a quantity wo will have many roforences ono after the other: a ruler will have
of the type (a,00) e (-ou,b) many marks, a scale will have many reference weights, a clock will keep ticking, What does
A uanicy, then, ks onered property with the onder topology it mean that a roferonce comes after another in terms of the beforo/on/after statomonts?

If reference r is before reference T, we expect that if the value measured is before the
first it will also be bofora tho second, and if it is after the second it will lso be after tho fist
Note that this is not enough, thongh, becatise as references have an extent they may overlap. therafore the before statement is narower than the not.after statement. This means tha,
#nd if thoy overlap ono can’t bo after the other. “To have an ordering properly dofined wo iven a set of aligned strict references, the set of all before and not-after statements is linearly
must have tha the first reference is entirely before the second. That i, if the value measured e e
is om the first. it will be before the s¢

Mazhematically, this type of ord:
before and stricty after. Tt does no
One may be tempted to define the
requires refining the references and, |
rofined roforances, mot the original o

will be identifiod by a sumber which will correspond to the mss oxpressed in a parti
Definition 3.21. A reference is strict if its before, an and after statements are incom-
patible. Formally, r=(b,0,3) is such that b#a and 0= ~bA-a. A reference is loose if it
is not strict.

Remark. n general, we can’t turn a loase reference into a strict one. The on statement.

Dofinition 3.4. A linear order oe @ set Q @ a vlationship < @ » Q = B such that
1. (antisyrametry) {f g < g3 end gy < gy then gy = gy 8
2 (mansitioity) (o s end @ <@ hen S
1. (total) ot least ¢ S @z or @ S @1
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st is more than g, Ko 1s also ordereed by nisrownoss but with the rev
ordertog of the pustilos abua. Theoo e th wey tatesnnts whooe vertiabl scs deine
the ordor topology avel therefore Jotutly castitate a bais for the experimental domain Definition 3.12. Let Dy be  natwally ordervil experimental domiain and X 113 goseil
constder tho statemert 5, = *the mass of the systenn s lesa then or opual 1o 1 Kg® ties. Define By« (“x<n* |71 X), Bus (201" [z1e X) and Bz Bu~Ba),
wih 1y = the nas of th sptem o s han 1 K", Wo kv 8 < 5. I fuct, i o Folace
the vabos 5 with azything b thaa | Ke we'l il Bave 33 5, Tntend f we e & valie Detiiion 813, st (2.5) be o e e Let .34 0. The s en immeds
groater than | Kg wo'd have 5, %5, In other words, if we call £ the set that includes both #uccessor of ¢y and ¢; it an immediate orof ¢ ment stri
the loss-than-or-oqual and Joss-than statements this is Al linearly ordered by narrowness, Setween them = the -mbmq That i3, qu < @ and there 13m0 ge Q .m m.,m <q<
But “the mass of the system is ess than or agual fo 1 Ko” is equivalent 10 ~ The mass of the T SAadal arv comstslun § . & ke densdion Sécomio) A e gt

remTAtrant Vs

sar_conditian
A st together with  linear ovder ts cnlled & linearly ordered set

Deftnition 3.5. Let (Q.<) be o linearly ordernd set. The order topology is the topol
oenerated by the collections of sets of the form:

(a,00)= {ge Qa<q)

no.b)= (gt Qla <) 7 CHAPTER 3. PROPERTIES AND QUANTITIES 3.3, REFERENCES AND EXPERIMENTAL ORDERING 75

e el s gk sl e hg odem i grader than 1 ™. In ather worte, B = By u-(P) comtatnm sl the tateemat N Proposition 3.14. Les Dy be o nararally ordernd erperimental domain. Then (B, » ) Proof. We have by wor = (by voy) AT = (byvor) a (b voy v as) = (b ver) abs) v Definition 5.33. Let D be a domain genemiad by a set of references R A reference
eyl e e e “the mas of the syrtem  lews than g5 Ko and ~The mas of he sprems s more than 0 ) 454 (B, <) are Nnaarly ovdered scts. Morevwes (Bh. ), () are svder foomary Definition 3.22. A reference is b (b vor) A (o2vas)) = (b ver) aba) v 1= (bivor) Aba. Therefore by vor < by, And 7= (b.0,a) is said to be aligned with D if be Dy and ac Da.
o Ko and thesw aro ll inoasly ondosed by narrowness. ). the first it cannot be on or after th since by < by vor, we have by < by o
As for propertses, the quantey values are st symbois e o abel the diferee cass The ordering of B can be further charactertaed. Noto that 3, = the mass of the aystems =(o2vaz) a(brvorvar) = (o2 vaa) a (br v Proposition 3.34. Let D be an experimental domain generated by o set of aligned strict
Q may cormespand to the intogers, s 0% 2 et of words ondered alphabetica 5 less than or oqual (0 1 Ko is tho immedinte sucomwor of 3 - the mass of the system 15 Proof. Lk £+ X -+ B be defined such that f(z,) = * < 2,". As them Is one 4 Proposition 3.23. Reference onl e, I ey Th ey references R and let D =Dy u~(D,). Then (D), <) is linearly ordered.
The units are bt eaptured by the nambers themselves: they aro captured by the fnet) less than # Ko "That s, they ato diforcat and thore can't bo any other statemeat in 5 that N i Gt e £ 30 G/ W n NS wgee s o 31407 vag, we have a; < 2 i
e o 5, ot mmower a5, i they 1fr o s cse. This wil bapen A e ) st ) e o moftesvity: mot < v DI B e o Proof. By 326 we have that B = By ~(5,) i aligned by narmowness. By $.15 the
in otler g X " (o, grand for any mass value. So B Is composed of two cxact copies of the ardering of X, where cach (O Bl VIR AN M S A o transitivity: if 1 < 2 ond 1 inco by v oy #0zv 35, we have by # 3 which means by < -az. ordering extends to o
';_'::—m":'f" 5 “wmoun® (o5, GuiA, Moagn, guthd. & &5 the cmad smemmng of gy cloment of one copy Is mmediately followed by an element of the other copy. Moreover, If & fir) < l(n) On the other hand If £(21) % f(22) then a8 sets (~00,21) & (-0, 23) wh Since by voy vay = T, we have —a; < by voy. Similarly —bz < 0y vay. Since byvo; #03vaz,
e ik e statorent i 1} has an tmmedsate succmwor, there st bo oely ooe cow that separstes the Taeans 71 < 73, “Thin roeans that f s &n order bomorpbism betwees (B, <) and (X, <) and is therefore o strict partial # bz and therefore ~a; % bz. Having a set of aligned reforences is not necossarily enough to cover the whole space at all
twa. If we call gi the value of that cass, thon tho statement must bo of th form “the mass slmlulv Yot g1 X ~ By bo dofined rach that g(z)) = *r > 7", An there b Since by < by, 32 <3y, by ¥ -3y and ~a; < by, the two references are aligned. a] levels of precision. To do that we need to make sure that, for example, between two references
10 i b e v 7pmf it et it e bk, o el 1 e Oy an/w mim u.'; then g1 Aw, -mk"m |m.:.-nm -mm.;w:.r :. nm.:.. s o snd only one statement *r > 2;" for each 7y ¢ X, g Is A bijection. Suppase 2, § 3, Proof. For irreflexivity, since tl that are not consecutive we can at least put a reference in between. Or that if we have two
doind s Watocaes Lt e the myatem i eas than o equal (0 ¢; Ko™ the succasar s broader by Just the postbility e . y R and thereforo bv o= 0 a. Therefo Proposition 8.28. Let 1y = (by,01,31) and 1y = (bg,0,22) be two strict references. Then
it e Sy e e o e et Lt o skl Wik g Thosabiom sist O ekt v et A have g(x,) P e AR I V2 ') #(x1) v 9(r2) wnd thered e . (1; e ﬂlr; b}(_u 1.31) 2 = (b2.0p,32) fe S{:;:ﬁ:l;:};vﬂhp‘ we can break them apart into finer ones that do not overlap and one
By s well. 9(x1) = 9(x3). On the other band f g(x,) = 5(73) then as sets (11, %) 2 (x3,00) wh - ~ B
Tho muai reslt b that the abovw charactertzation of the busis of the domain is moas 2, < x5, 'This moans that g s an order betwoen (B,.+) und (X, <) Proof. Loty < rs. By 3:27, we have ~ar < b, Conversely,Iot -y < by, Then ~a, # ~by. We call a set of references refinable if the domain they generate has the above mentioned
anel sulficient 1 order the poreibilites. 1f an experimental domale has o basls compose of Tosho that 3l arly oded, 5.5 . I ey bochcome rom cber 5 Bocause the reforences are strct, —a; = by vy and by = 03 v ag. Therefore by vor 03 vay properties. This allows us to break up the whole domain into a sequence of references that
thoy are already ordervd by nasTow. the two stateme and 1y < 1 by definitlon ' 5 do not overlap, are linearly ordered and that cover the whole space. As we get to the finest
1irsn=tron’ A \ > llnu-r!v mim-l dither {2 ¢ X|z<n)c e references, their hefore statements will he immediately follawed by the negation of their after
LA Sl e S cai o dnd Definition 3.29, A reference is the immediate predccessor of another if nothing can be statements, since there can’t b any reference in between. Conceptually, this will give us the
bRt A i i Jound before the second and ofter the firsi. Formally, r1 < rz and a1 # ba. Two references second and the third condition of the domain ordering theorem 3.16.
65 CHAPTER 3. PROPERTIES AND QUANTITIES 3.2. QUANTITIES AND ORDERING 69 n 3. ll.ullx B, hAv:l B, b two -Lh ;:{ m\:)[;yﬂhu:'mmu mul:at 13 are consecutive if one is the immediate successor of the other.
norrowness. Let T\, and D, e the experimental doma .
which returns elements of the original set and therefore reduces to countable conjunctions. T prove (i), we have that By and B, ate linearly ordered by 3.14. We need to show that -vly;ﬂ\ﬂlu and D = Dyo~(D,). Then (Dy.2), (Dy.2) and (D, 2) ore lmearsy Proposition 3.30. Let 1 = (b1,01.21) and ry = (b2,02.2:) be two references. If s gen,;:gm 3.05. Let D be on mf;’:mu CETEE O] D‘“_"“’:M "'m"‘f;
Therefore, when forming D4 the only new elements will be the countable disfunctions. the linear ordering holds across the sets. Let 71,72 X and consider the two statements immediately before ry them by = -y LG O NG R G a3 iEhars (e
Comsidor two countablo st 31,2 < B Thoi disunctions br = Y, band b = b “z <z and *T< 1" = ~"r> 12, As X is linearly ordered, cither {re X |z <z} {Te s () e, We ik B oty s ) 72 = (by,02,2,) aligned with D, we con alweys
roprasant the narrowest statement that is broader than all clements of the respoct = Xz <22} or (T g x|z <2=) EBak \T <21}. Therefore either “r <" < “r < 2,7 or it ks o subet of B which bs linearly oedorod by narrownes. fief3 B3 p By (i, T i eharmm =, [y « find an intermediate one if they are not consecutive; that is, if ™ < vy but my is not
Suppose tha for each cloment of B; we can find.a broader element in B;. Then by, belng o S e R By e m:ﬁ:;:z:ﬂm-wh_ﬁ“: by n-"-"‘:'-‘mmm RISy WS = the smmediate suecessor of v, then we can find a strict reference y aligned with D
fh':a:" m"‘[:‘fq;‘::‘:;:é m'ﬁ f:nmin‘:‘;‘:‘:‘:;‘m;fax fx‘! E‘“‘C‘;‘:‘;&If To prove (if), let s, € Ds. Tako s, € D, such that s, is the narowest statement in s will roturn the beoadest clemant. The countable disjunction, instoad, can Proposition 3.31. Let 1, = (b1,01,31) and 1y = (bz. 02.32) be two sirict references. Then such that 1 <y <7a.
- m“ “lhl s some clement, in B, for which there & M‘émw loment i By, Sines ~(D,) that is broader than s. This exists because D, is closed by infinite disjunction. As w cloments. But using those elements again will not Introduce new ones: n is immediately before ry if and only if by = -a;. « refine overlapping references if one is finer than the other; that is, if 02 < 0y, we can
o . 2 .7, let X be the set of passibilities compatible with -, but not compatible with s;. ton of countable disjunctions wil still be a countable disjunctians; the finke ) Jind a strict reference v aligned with D such that oy < oy and either by = by and
D I S Y Gt s (s (e A (R y D o e Al Tho set cannot. have more than one elemant, or we could find an clement 2, € X, such that of countable disjunctions b the countable disjunction of finite conjunctons, Proof. Let ry be immediately before ry. Then by = ~ay by 3.30. Conversely, let by = ~a;.. rs<ry oras=a, ond <.
clements In By, This means that element 13 broador than by and since by I broadar than 5% “2<2," <. If X, contains ane possibility, then =, is the immediate successor. If Then 1y < rz by 3.28. We also have 2, # -3y, therefore a, # b, and r, is immediately before
all elements in By we have by # by, Therefore the domain Dy generated by By is linearly 1 ts emupty then 5 = . Similarly, we can start with s, ¢ D, and find sy ¢ Dy such that 5, 1, by definition a Proposition 3. o Let D be an experimental domain generated by a set of refinable aligned
°m}'|§‘;,"3:;h‘";;“:§ (D) 1 ety ondered. Tho basi . 1 linearly ordored by is the broadest staternent in D that is narrower than -s,.. Lat X, ba tha set of possibilities et veferencos
Droadntes bocause the pegation of s cloments v part of B aad are cedered by narronnca: compatible it b 20t compatbl with 5 1f ¥, contais ono posiilty, then =,
Note that broadness is the opposite order of narrowness and therefore a set Iearly ordered DT E RO O i e DTy (e
by one s linearly ordered by the other. Thercfore 5, is also linearly ordered by narrown D Coof e oo S 0;5’ T‘:‘s e
and so is D, by the previous argument. Therefore D, is ordered by broadness. e can et ra for some x e eans s = B <ot while T an
et oy DDy e ety encoed by wm_n;z o ol mace o show therefore s < By N L3 CHAPTER 3. PROPERTIES AND QUANTITIES 3.4, DISCRETE QUANTITIES b
that the countable disjunctions of elements of Bj, are either narrower or broader
eountabla confunctions of the sagatians of clamans of B,. Lot B, c B anel A | means we can find 3 = (b.~b A ~a2,32) for some b e Ts such that 15 < s and therefore Now we show that R consists of aligned strict references. We already saw that b 4 a
disjunction by = Vb represents the narrovest statement that is broader than al ﬂl:\: Ta:‘-md L e o o i ] ;nd :-E a‘sh-;have :;K:: I;:;mmnwfble with bﬁ::ﬂ_md ;dThE l:fl;mm are strict.
} . the third, suppose a1 € Dy and by € Dy such that —a; < 1= (1,-ana o show they are , take two references. fore and not afier statements aro
(IS CIDIDERTr=ches U B ) sam e i iy, o CHAPTER 5. PROPERTIES AND QUANTITIES s AND AL ’ o and rz = (b2, bz, 1) are strict Teferences aligned with the domain such tha 1 < r2 but r2 linearly ordered by 3.14 which means the references are aligned.
is narrower than all clemenis of ~(A). Suppose that for one element of (4| - ! - ! is not an immediate succassor of r;. This means we can find rs = (b, ~b A ~a,a) such that "To show R is refinable, note that each reforonce can be expressed as (“r < x", 1) <
find & broader statement in By Then by, being broader than all elements in £ of the Lot (** : By — B, b the function such that ~(b*™) = -b** Is ho quantity is exactly Dot as easy: £1<r3 <3 and therefore -a; < b<-a < +ba o 282, * > 7,") where 21,72 ¢ X and “z < TS 22" = “2 2 71”7 A %z € 2. That is,

Note s
he mark on the uler has A dh, the balance has friction, the tick of onr cock wil et a
finite amount of time. That is, the reference itself can only be compared up to a finite level
of precision. This may be a problem when constructing the references themselves: how do we

‘broader than that one element in —(A,). But since -a, is narrower than all ol the immediate successor of b. Let b: X — B be the function such that z = ~b(z)A-b(z)"*.
~(Az), we have —az < by. Conversely, suppose that for no element of ~(4;) we | On X define the ordering < such that z1 <2z if and oenly if b(z1) b(n) Since (Bs, )
‘broader statement in By. As B is linearly ordered, it means that all elements in is limearly ordered so is (X.<). To show that the ordering is natural, suppose 71 < 12
‘broader than all elements in B,. This means that all elements in ~(4;) are bro then b(z:) < ~b(z1)"* = b(zz) and therefore 2, % bzz). We also have *b(zn )" 3 b(z2) < know that the marks on our ruler are equally spaced, or that the weights are equally prepared,
by and therofore by < ~a2. Therefore DD is lincarly ordered by narrowness. ~b(zs)** and therefore z, < b(x;)**. This means that given a posstbility =, € X, all and or that ticks of our clock are equally timed? It is a cireular problem in the sense that, n a
only the possibilities lower than r; are compatible with b(r1) and therefore b(r;) = “r < way, we need instruments of measurement to be able to create instruments of measurement.
177, while all and only the possibilities greater than 1) are compatible with b(zr;)** and Yet, even if our references can’t be perfectly compared and are not perfectly equal, we can
therefore b(r)** = “r > 7,”. The topology is the order topology and the domain has a still say whether the value is well before or well after any of them.

‘matural ordering. =) To make matters worse, the ohject we are measuring may itself have an extent. If we
are measuring the position of a tiny ball, it may be clearly before or clearly after the nearest
‘mark, but it may also be partly before, partly on and partly after. One may try to sidestep
the problem by measuring part of the object, say the position of the conter of mass or of its
closest part. But this assumes we have a process to interact with only part of the nb]ac'. and
that part can only be before, on or after the reference. It may be a reasonable
many cases but we have to be mindful that we made that assumption: our general deﬂm ion
will have to be able to work in the less ideal cases.

In our gencral mathematical theory of experimental science, we can capture the above
discussion with the following definitions. A reference is represented by a set of three state-
ments: they tell us whether the object is before, on or after a specific reference. To make
sense, these have to satisfy the following minimal requirements. The before and the after
statements must be verifiable, as otherwise they would not be usable as references. As the
reference must be somewhere, the on statement cannot be a contradiction. If the object is
not before and not after the reference, then it must be on the reference. If the object is before
and after the reference, then it must also be on the reference. These requirements recognize
that, in general, a reference has an extent and so does the ohject being measured.

every reference is identified by two possibilities 2, 2, such that 7, < x,. Therefore take
two rofarences ry,rz € B and lot (71,73) and (z3,7) bo the respective pair of p tios
We can use to express the references as we have shown. Suppose r, <z but they are not
consecutive. Then “z < z,” < “z < 2y, That is, we ean find 25 € X such that z; < 25 <23
which means “z < 75"  *r < 25" and “z < 75" % “r < 75”. Therefore the reference ryc R
identified by (5, s) is between the two references. On the other hand, asume the sacond
reforence is finer than the first. Then z, < 75 and , < 2 with cither 7, # 2, or 73 2,
Consider the references rs,r4 € R identified by (z1,71) and (rz,z2). Either rs < £y or

Proposition 3.37. Let D be an experimental domain genernted by a set of refinable aligned
surict veferences. Then oll elements of 1D are part of  pair (s, ~Sa) such that sp € Dy,
53 € Dy and -, is the immediate successor of sy in D) or s, = ~s,. Moreover if se D has
an immediate successor, then s ¢ Dy.

Theorem 8.16 (Domain ordering theorem). An experimental domain Dx s

Proof. Let D be an experimental domain generated by a set of refinable aligned strict
orderd if and only if i i the combination of two experimental domains Dx =
that:

reforances. Lot sy Dy, Lot A= (€ Dalavss# 7). Lot s, = V a. First wo show that

$% % Wehmosya-s,=sA-Vassap-as Al s0n -3 For all 3 € 4 we lave r2 <1y Also note that the hefore statements of ry and T are the same and the after
avsE T, -a f 55 which means s, % -a becanse of the total order of D. This means that statoments of ry and ry aro the same. Therofore we satisfy all the requirements and the
551 ~a= 5, for all ac A, thereloro s, A -5, = 5, and 5 < -5, set. R is refinable by defnition o

Next. wo show that no siatement s I is such that s, < 5 < sa. Let a ¢ Dy such that
s < -a. By construction a ¢ A and therefore ~5, % -a. Thereforo w can’ have s, <3 < ~S.
We also can’t have b e Dy such that 5 < b < -5,: by 336 we'd find < D, such that
5525 b< -, which was ruled out. Suchﬂem:wocm Eithor s, % s, then s < —.:
=, i the immediate successor of b, Or

“Tho s reasonng can be appiod starting rom € D, o fnd a5 Dy sch tht 5
the immediate predeccssor of -5, or an cquivalont statement. This shows that all elements
of D axe paired.

To show that if a statement, in I has a sucoessor then it must be a before statement,
let 51,5 ¢ D) such that s, s the immediate successor of si. By 3.36, in all cases where
51 D; and 57 ¢ D), we can always find another statement between the two. Then we must
have that s, € Dy and 5, ¢ D al

(i) D =Dyu~(D.) is linearly ondered by narmouness
() all clements of D are part of o pair (s;,«sﬁ) such that s, € D, s, € D, ¢

cither the immadiate successor of 55 in D or 5= s, 3.
(i) 57 D s an tmmedioce sccessor, then 3¢ Dy

W

References and experimental ordering

In the previous section we have characterized what a quantity Is and how It relates to an

Proaf, Let Dx be a naturally ordered experimental domain, Let By and B, | experimental domain. But as we saw in the first chapters, the possibilities of a domain are

a1 11 et P a5 [ ) U5 o)t e Tetal ceac 504 not objects that exist a priort: they are defined based on what can be verified experimentally.

bo tho domain genarated by B, and D, be the domain generated by B,. T] Thercloro sy ssigning an ordoring to the pasbilies of 2 domty docs o s the

generated from Dy and D, by finite conjunction and countable disjunction and ructed? How do we, in practice,

Dx=DyxD.. Creats A ysem of erunes . allows i to measare & g ot lvon evl of reckion
What are the assumptions wo make In that procoss?

In this section we construct ordering from the idea of a reforence that physically defines
a boundary between a before and an after. In general, a reforence has an extent and may
averlap with others. W define ordering In terms of references that are clearly before and

x others. We see that the possibilities have a natural ordering only if they are generated
from a set. of references that Is refinable (wo can always find finer ones that do not overlap)
and for which before/on/after are muwally exclusive cases. The possibilities, then, are the o can compare the extent of two references and say that one is finer than the other if
finest references possible. the on statement s narrower than the other, and the before and afier statements are wider.

Wo are by now so used of the ideas of real numbers, nogative numbers and the number zero This corrasponds to a finer tick of a uler or a finer pulse in our timing system. Wo say that
that it s diffieut t0 realizo that theso aro mental constructs that aro, in the end, somewhat & roforonce I strict f tho bofore, on and after statements are Incompatible. That i, the three
rocont in the history of humankind. Yot geometry itsalf started four thousand years ago as cases ar distinet and can’t be true at the sam time.
an experimentally discovered <olloction of rulas concerning langths, azcas and angles. That
s, human beings were measuring quantities well before the real mumbers were invented. So,
how does one construct instruments that measure values?

To measure position, we can use a ruler, which Is a series of equally spaced marks. We
give a label t0 each mark (e.q. a munber) and note which two marks are closest 1o the target
position (.g. between 1.2 and 1.3 cm). To measure weight, we can use a balanco and a sot of & S e D e O A e s ea o
equally prepared reference weights. The balance can clearly tell us whether one side is heavier statements
than the other, so wo uso It to compare tho target with 2 number of reforenco weights and 2 Eadiicn b tna Frreeii
note the two closest (o.g. between 300 and 400 grams). A clock gives us a series of ovonts to & G momals Sheord o <baeasio
compare to (e.g. earth's rotation on its axis, the ticks of a clock). We can pour water from £ G rocrg th e et oo
crce comainr e oo a man e o ar e 10 e e, Inal A boginning reference has nothing before t. That e, b= 1. An ending reference fns
thaso cases what actually happons is similar: wo have a toforence (e.g. & mark on 4 ruler,

& sat. of aqually prepared woights, & mumber of ticks of a clock) and It s fairly easy to tall A G5 ulis/ennes i lan e ol dhs

To recap, experimentally we construet ordsring by placing references and being able to
tell whether the object measured is hefore or after. We can define a linear order on the
‘possibilities, and therefore a quantity, only when the set of references meets special conditions.
The references must be strict, meaning that before, on and after are mutually exclusive,
Tlmy must bo zllglmd meaning that the before and not-after statement must ba ordered by

must be refinable, meaning when they overlap we can always find finer
Tfenenees wm. l.'e]l defined hefore/after relationships. If all these conditions apply, we have
a linear order. If any of these conditions fail, a linear order cannot bo defined.

The possibilities, then, correspond to the finest roforences we can construct within the
domain. That is, given & value go, we have the possibility “the value of the property is go”
and we have the reforence ( “the vaiue of the property is less than gy, *the value of the property
is o”, “the value of the property is more than gg”).

Theorem 3.38 (Reference ordering theorem). An erperimental domain is naturaliy or-
dered if and only if it can be genernted by a set of refinable aligned strict references.

Proof. Suppose Dx is an experimental domain generated by a set of refinable aligned
strict roforonces. Thon by 3.34 and 3.37 the domain satisfies the roquirement of theorem
3.16 and therefore is naturally ordered.

Now suppose Dy is naturally orderod. Dofine tho set By, B, and D as in 3.12. Lot
R={{b,~bn—a,3)|be Byac By, b<-a} be the set of all references constructed from the
basts. First let us verify they are references. The before and after statements are verifiable
sinco they are part of the basis. The on statement ~b A =a Is not a contradiction sinco
b<-a means b #a and b # ~a. The on statement Is broader than -b A -a as they are
equivalent and it is broader than baa as that is a contradietion sinee b < -a. Therefore R
is a set of reforences. Since the before and after statements of R coincide with the basis of
the domain, D is generated by R

3.4 Discrete quantities

Now that we have seen the general conditions to have a naturally ordered experimental do-
‘main, we study common types of quantities and under what conditions they arise. We start
with discrete ones: the number of chromesomes for a species, the mumber of inhabitants of a
country r the atomic number for an element are all discrete quantities. These are quantities
that are fully characterized by integers (positive or negative)

We will see that d havo a simpla -
there can only be a finite mumber of other references.

“The first thing we want to do is characterize the ordering of the integers. That is, we want.
10 find necessary and sufficient conditions for an ordered set. of clements to e somarphic to
a subset of integers. First we note that between any two integers there are always finitely
many eloments. Let’s eall sparse an orderod set that has that property: that between two
elements there are only finitely many. This is enough to say that the order is isomorphic to

DR

Definition 3.17. A reference defines o before, an on ond an after relationship between
tself and anather object. Formally o reference 7= (b,0,a) s @ tuple of three statements
uch that:

‘batween two references
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Reference ordering theorem

* An experimental domain is fully characterized by a quantity if and
only if it can be generated by a set of refinable aligned strict

references
Strict The quantity is always only before/on/after the reference. This can be assumed if the extent of
what we measure is smaller than the extent of the reference.
Aligned The before/after statement have an ordering in term of narrowness (specificity).
Necessary to have a coherent before and after over the whole range.
Refinable If we have overlaps, we can always construct finer references.

Necessary to create smallest mutually exclusive cases that correspond to the values.

Gabriele Carcassi - University of Michigan 28



Integers and reals

* If we assume that between two non-overlapping references we can

only put finitely many references, then the ordering is the one of the
Integers

* Equality can be tested as well

* If we assume that between two non-overlapping references we can
always put another, then the ordering is the one of the reals
* Equality cannot be tested in this case

* These are the only two orderings that are homogeneous, where all
references have the same properties

* And that is why they are the most fundamental in physics



Are these requirements tenable at Planck scale?

Property of | Meaning Problems
references

Strict The quantity is always only before/on/after the
reference. This can be assumed if the extent of
what we measure is smaller than the reference.

Aligned The before/after statements have an ordering in
term of narrowness (specificity).

Necessary to have a coherent before and after over
the whole range.

Refinable If we have overlaps, we can always construct finer
references.

Necessary to create smallest mutually exclusive
cases that correspond to the values.

Objects measured and references are ultimately of
the same kind; their extent should be comparable

If indistinguishable particles are the smallest
references and are placed very close to each other,
it is not clear how can be sure they haven’t
switched

The whole point of reaching Planck length is that
we cannot further refine our references

Gabriele Carcassi - University of Michigan 30



Are these requirements tenable at Planck scale?

* If we take the quantum nature of the references into consideration,
all the requirements seem untenable

* Note that all three are necessary: if even only one fails we have a problem

* What fails is ordering itself

* |s not that the real numbers need to be changed to rationals or integers: we
don’t have numbers to begin with



Failure of ordering

e Riemanmydn manifold

e Differentiable %ifold + inn%roduct

. Topc)éical manifold + differentiable}(mture
* Ordered tQ¥ological space + Ioca)@%"
* Topological space + order ¥dpology

* If ordering fails, all the structures that are based on ordering fail as
well. No manifold, no differentiability, no calculus, no inner product,
no geometry. We need to develop a new chain of mathematical tools.

Gabriele Carcassi - University of Michigan 32



Conclusion

* Topology, the simplest mathematical structure needed for geometry,
has a clear well-defined meaning in terms of experimental verifiability

* This is appropriate as experimental verifiability is the foundation of science

* Order topology, the next required structure, formally captures the
ability to experimentally compare quantities
* The ordering is generated by logical relationships: if “x<8” then also “x<10”

* For real numbers, the requirements can only be satisfied ideally, most
likely leading to a breakdown at Planck scale

* The idea that our “measurement device” is “classical” is baked into the very
nature of the order topology, which can’t then be undone up the stack



Conclusion

* The standard mathematical toolchain (i.e. manifolds,
differentiability/integration, differential geometry, Riemannian
geometry, ...) needs to be rethought

* The idea that we can take something and divide it into infinitesimal
contributions is intrinsically classical

* In the same way that the geometry of space-time (i.e. the metric
tensor) depends on the energy/mass distribution, the topology may
depend on it as well

* The foundations of physics lie in understanding the most basic
mathematical structures, their physical significance and how they can
be generalized



General mathematical theory_ Experimental verifiability
of experimental science _ .
leads to topological spaces, sigma-algebras, ...

State-level assumptions

Infinitesimal reducibility Irreducibility

leads to classical phase space leads to quantum state space

Process-level assumptions
Hamilton’s equations

Deterministic and reversible Schroedinger equation

evolution .
leads to isomorphism on state space lhalp = Hy

Non-reversible evolution Thermodynamics

Euler-Lagrange equations

| Kinematic equivalence
6f L(q,q,t) =0 leads to massive particles
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For more information

* Assumptions of Physics project website:
http://assumptionsofphysics.org/

* Topology and Experimental Distinguishability
Christine A. Aidala, Gabriele Carcassi, and Mark J. Greenfield, Top.
Proc. 54 (2019) pp. 271-282
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