ALICE Overview

Massimo Masera
University of Torino and I.N.F.N. (Italy)
for the ALICE Collaboration
A Large Ion Collider Experiment

Introduction

• After a short introduction, a selection of ALICE results will be presented
 ➡ Emphasis will be given to recent Run 2 analyses
 ➡ Selection means that several topics will be left out, but several ALICE talks have been scheduled in this conference: they will help to fill the gaps!

• ALICE talks:

 Aug, 22 ➡ A. Isakov, Heavy-flavour jets in ALICE
 ➡ M. Gagliardi, Detector and Trigger performance in ALICE during Run2

 Aug, 24 ➡ F. Catalano, Measurement of D-meson production and flow in Pb-Pb collisions with ALICE at the LHC
 ➡ D. Hatzifotiadou, Outreach activities of the ALICE experiment

 Aug, 26 ➡ A. Fantoni, Upgrade of the ALICE inner tracking: construction and commissioning
 ➡ K. Gulbrandsen, The ALICE Upgrade: Future Prospects
 ➡ M. Toppi, Multiplicity and energy dependence of light charged particle production in ALICE at the LHC
 ➡ M. Vasileiou, Strangeness production with ALICE at the LHC.

 Aug, 27 ➡ B.Lim, Recent Measurements Hadronic Resonances with ALICE at the LHC
 ➡ S. Bufalino, Production of light (anti-)(hyper-)nuclei at LHC energies with ALICE
Why ALICE?

- **ALICE**: A Large Ion Collider Experiment
- **Main goal**: Study the properties of strongly-interacting matter at extreme conditions of temperature and energy density
 - The QCD phase diagram at high temperature and vanishing baryochemical potential is accessible in collisions of heavy nuclei at the highest energies
 - The transition to a state in which partons and gluons are deconfined (Quark Gluon Plasma, QGP) can be created in the laboratory
 - Early Universe: QGP-hadron transition at $t \sim 10^{-6}$ s after the Big Bang
- **Lattice QCD**: cross-over from hadrons to QGP at
 - Critical temperature $T_c \approx 145 - 160$ MeV
 - Energy density $\epsilon_c \approx 0.5$ GeV/fm3

A. Bazarov et al, PRD 90 (2014) 094503
S. Borsanyi et al, JHEP 1009 (2010) 073
Space-time evolution of a Heavy-Ion collision

Initial state
- Collision: Hard probes generation
- QGP: thermalization and expansion

Final state
- Chemical freeze-out
- Bulk production
- Kinetic freeze-out: Particles stream to the detector

Collision time
- Formation time (charm quark):
 \[
 \frac{1}{2m_c} = 0.08 \text{ fm/c} \approx 3 \times 10^{-25} \text{ s}
 \]
- Collision time:
 \[
 \frac{2R}{\gamma} = 0.005 \text{ fm/c} \approx 2 \times 10^{-26} \text{ s}
 \]

QGP life time
- \(10 \text{ fm/c} \approx 3 \times 10^{-23} \text{ s}\)

Thermalization time
- \(0.2 \text{ fm/c} \approx 7 \times 10^{-25} \text{ s}\)
ALICE

- **Inner Tracking System**: vertexing, tracking and PID
- **Time Projection Chamber**: tracking and PID
- **Time-Of-Flight**: PID
- **Material budget**: 0.08 % X_0
- **Particle ID**: 0.1 ÷ 20 GeV/c
- **Momentum resolution**: $\sim 1 - 7\%$ for $p_T = 0.1 - 20$ GeV/c

Muon spectrometer
ALICE

• **V0**: multiplicity/centrality classification

• **EMCAL**: e.m. calorimeter

• **PHOS**: photon spectrometer

• Material budget: 0.08% X_0

• Particle ID: 0.1 ÷ 20 GeV/c

• Momentum resolution: $\sim 1 - 7\%$ for $p_T = 0.1 - 20$ GeV/c
ALICE

- **V0**: multiplicity/centrality classification
- **EMCAL**: e.m. calorimeter
- **PHOS**: photon spectrometer
- Material budget: 0.08% \(X_0 \)
- Particle ID: \(0.1 \div 20 \) GeV/c
- Momentum resolution: \(\sim 1 - 7\% \) for \(p_T = 0.1 - 20 \) GeV/c

Much more on ALICE apparatus in M. Gagliardi’s talk on August, 22nd.
Data sets - Run 1 & Run 2

- **In Run 2**: significant increase of integrated luminosity:
 - Higher precision
 - Rare probes
- Different collisions systems and energies:
 - Energy and system dependence studies of particle production are possible

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>v_{sNN} (TeV)</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb</td>
<td>2010-2011</td>
<td>2.76</td>
<td>~75 µb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>5.02</td>
<td>~250 µb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>5.02</td>
<td>~0.9 nb⁻¹</td>
</tr>
<tr>
<td>Xe-Xe</td>
<td>2017</td>
<td>5.44</td>
<td>~0.3 µb⁻¹</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2013</td>
<td>5.02</td>
<td>~15 nb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>5.02, 8.16</td>
<td>~3 nb⁻¹, ~25 nb⁻¹</td>
</tr>
<tr>
<td>pp</td>
<td>2009-2013</td>
<td>0.9, 2.76, 7, 8</td>
<td>~200 µb⁻¹, ~100 µb⁻¹, ~1.5 pb⁻¹, ~2.5 pb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td>5.02, 13</td>
<td>~1.3 pb⁻¹, ~36 pb⁻¹</td>
</tr>
</tbody>
</table>
Data sets - Run 1 & Run 2

- In Run 2: significant increase of integrated luminosity:
 - Higher precision
 - Rare probes
- Different collisions systems and energies:
 - Energy and system dependence studies of particle production are possible

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>v_{NN} (TeV)</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb</td>
<td>2010-2011</td>
<td>2.76</td>
<td>~75 μb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>5.02</td>
<td>~250 μb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>5.02</td>
<td>~0.9 nb⁻¹</td>
</tr>
<tr>
<td>Xe-Xe</td>
<td>2017</td>
<td>5.44</td>
<td>~0.3 μb⁻¹</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2013</td>
<td>5.02</td>
<td>~15 nb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>5.02, 8.16</td>
<td>~3 nb⁻¹, ~25 nb⁻¹</td>
</tr>
<tr>
<td>pp</td>
<td>2009-2013</td>
<td>0.9, 2.76, 7, 8</td>
<td>~200 μb⁻¹, ~100 μb⁻¹, ~1.5 pb⁻¹, ~2.5 pb⁻¹</td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td>5.02, 13</td>
<td>~1.3 pb⁻¹, ~36 pb⁻¹</td>
</tr>
</tbody>
</table>

- **pp 13 TeV**
 - High multiplicity triggers
 - Reference for rare probes
- **pp 5.02 TeV**
 - Reference data sample for Pb-Pb

- **Pb-Pb 2018**
 - Central (0-10%): 9x2015
 - Mid-Central (30-50%): 4x2015
ALICE performance in Pb-Pb 2018

- Fast reconstruction for calorimeters and muon spectrometer synchronous with data taking.
- Improved data quality with respect to 2015
 - Reduced space charge distortions in the TPC
- Analysis is ongoing, but several results are already available

\[Y(1S) \rightarrow \mu^+\mu^- \]

\[J/\psi \rightarrow \mu^+\mu^- \]

Ultra Peripheral Collisions
The initial state of the collision

• What is the structure of the colliding objects?
 ➤ Spatial and momentum distribution of incoming partons
 ➤ Modification of the PDFs in bound nucleons (nPDF)
 ➤ Gluon saturation at small Bjorken-x / Color Glass condensate

• Insight into initial state via:
 ➤ p-Pb collisions
 ➤ Ultra-Peripheral Pb-Pb collisions
 ✓ Impact parameter $b > 2R_2$
 ✓ Hadronic interactions are suppressed
Ultra-Peripheral Pb-Pb collisions

- Coherent J/ψ photo production
 - γ coupling coherently to the nucleus
 - Low p_T J/ψ, target nucleus not breaking up
 - Sensitive to gluon PDFs at low Bjorken-x
 ($\sim 10^{-5} \div 10^{-2}$)
 - ✓ shadowing region

Models without gluon shadowing overpredict the data

Moderate shadowing in the nucleus necessary to describe the measurements
The final state of the collision

- Up to ~21000 charged particles are produced in a central Pb-Pb collision at $\sqrt{s_{NN}} = 5.02$ TeV.
- The kinematics of the produced particles is frozen at the kinetic freeze-out.
- ALICE measurements of these bulk particles provide information on the geometry of the collision and on the evolution of the created fireball:
 - charged particle multiplicity
 - transverse momentum spectra of identified particles
 - collective phenomena
 - correlations
Multiplicity in pp, p-Pb, Xe-Xe and Pb-Pb

- Charged multiplicity expressed either as $\langle dN_{ch}/d\eta \rangle$ or N_{ch}^{tot} scaled by the number of participant pairs.
- \sqrt{s} dependence in A-A collisions differs from pp and p-Pb
 - No universal scaling
- In central Xe-Xe: multiplicity per part. pair follows the same power-law fit with energy found with previous A-A measurements.
Charged multiplicity expressed either as \(\langle dN_{\text{ch}}/d\eta \rangle \) or \(N_{\text{ch}}^{\text{tot}} \) scaled by the number of participant pairs.

- \(\sqrt{s} \) dependence in A-A collisions differs from pp and p-Pb
 - No universal scaling

- In central Xe-Xe: multiplicity per part. pair follows the same power-law fit with energy found with previous A-A measurements.

- As a function of centrality:
 - Deviations from \(N_{\text{part}} \) scaling in all A-A available data
 - Steeper rise in most central A-A collisions possibly due to upward fluctuations

- The underlying mechanism to describe the increase with energy and centrality is still not completely understood
ALICE has measured p_T spectra for identified hadron in the central rapidity region.

- Even at LHC energy, 95% of produced particles have $p_T < 2$ GeV/c.
- Bulk of particle production associated with "soft" physics in non-perturbative regime of QCD.

Hardening of the spectral shapes with increasing centrality and particle mass.
The flowing “bulk” of soft particles

- ALICE has measured p_T spectra for identified hadron in the central rapidity region
 - Even at LHC energy, 95% of produced particles have $p_T < 2 \text{ GeV/c}$
 - Bulk of particle production associated with “soft” physics in non-perturbative regime of QCD
- Hardening of the spectral shapes with increasing centrality and particle mass
- For p-Pb (and pp) modifications mostly for $p_T < 3 \text{ GeV/c}$
- New: p-Pb sample at 8.16 TeV (2018)
The flowing “bulk” of soft particles

- ALICE has measured p_T spectra for identified hadrons in the central rapidity region
 - Even at LHC energy, 95% of produced particles have $p_T < 2$ GeV/c
 - Bulk of particle production associated with “soft” physics in non-perturbative regime of QCD
- Hardening of the spectral shapes with increasing centrality and particle mass
- For p-Pb (and pp) modifications mostly for $p_T < 3$ GeV/c
- New: p-Pb sample at 8.16 TeV (2018)
Radial flow

- The hardening of the p_T spectra is described by hydrodynamic expansion of the medium (radial flow) with transverse velocity β_T

- Simultaneous blast-wave fits to π^\pm, K^\pm and $p + \bar{p}$ spectra with T_{kin} (kinetic freeze-out temperature) and $\langle \beta_T \rangle$ as parameters

- **Pb-Pb collisions**: T_{kin} decreases and $\langle \beta_T \rangle$ increases with centrality

- **Small systems**: $\langle \beta_T \rangle$ increases with multiplicity
 - T_{kin} higher w.r.t. Pb-Pb
 - At the same multiplicity $\langle \beta_T \rangle$ larger in smaller systems

- **Simplified approach** more complete modeling: hydrodynamical model + freeze-out and resonance decays.

Anisotropic transverse flow

• Reaction plane: it contains the beam direction and the centers of the colliding nuclei

• **Hydrodynamic description**: the initial spatial anisotropy of the overlap region becomes a momentum anisotropy:
 ➤ Larger pressure gradients imply more particles emitted in-plane

• The anisotropy is:
 ➤ quantified through a Fourier decomposition of the azimuthal distribution, w.r.t. reaction plane
 ➤ expressed via the v_n coefficients
 ➤ v_2 (elliptic flow) is sensitive to the initial geometry

• Higher flow harmonics are particularly sensitive to:
 ➤ **initial state fluctuations** (odd harmonics as v_3 should be 0 without fluctuations)
 ➤ the value of η/s (shear viscosity / entropy density) in hydrodynamic calculations.

\[
\frac{dN}{d\varphi} = \frac{N_0}{2\pi} \left\{ 1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos [n(\varphi - \Psi_{RP})] \right\}
\]

\[
v_n = \langle \cos [n(\varphi - \Psi_{RP})] \rangle
\]
Anisotropic transverse flow - light flavors

- Elliptic flow (v_2) at low p_T governed by hydrodynamics: mass ordering originating from collective radial flow velocity
- At ~3 GeV/c: baryon-meson crossing → particle production via coalescence
- Connection between initial-state fluctuations and final-state particle v_n sensitive to QGP properties such as shear and bulk viscosity
Anisotropic transverse flow - light flavors

- Elliptic flow (v_2) at low p_T governed by hydrodynamics: mass ordering originating from collective radial flow velocity
- At ~3 GeV/c: baryon-meson crossing → particle production via coalescence
- Connection between initial-state fluctuations and final-state particle v_n sensitive to QGP properties such as shear and bulk viscosity
- **Elliptic flow has been observed also for light nuclei as deuteron (and 3He)**
 - Hydrodynamical simulation (iEBE-VISHNU) + coalescence give a good description of the observed v_2 (and v_3)
Constrain initial state and QGP properties

Multiple experimental info are needed:
- \(v_2 \) and higher harmonics
- Data at different collision energies
- Correlations amongst \(v_n \)

Energy dependence is sensitive to \(\eta/s \) (viscosity / entropy density)
Constrain initial state and QGP properties

ALICE measurements help in constraining \(\eta/s \) vs \(T \)

\(\eta/s \) is close to its quantum limit

\(v_2 \) and higher harmonics

Data at different collision energies

Correlations amongst \(v_n \)

Energy dependence is sensitive to \(\eta/s \)

\((*) \) KSS bound \(1/4\pi \)

\(ALICE, JHEP07 (2018) 103 \)

\(J. Bernhard et al, Phys. Rev. C 94, 024907 \)
D-meson anisotropic transverse flow

- Charm produced isotropically in the early stage of the collision
 - azimuthal anisotropy \(v_2 \) acquired by interactions with the QGP
- For HF, specifically at high \(p_T \), parton energy loss is the driving factor of the observed anisotropy
- Positive \(D \)-meson \(v_2 \) in mid-central \(\text{Pb-Pb} \) collisions indicates participation of charm quark in the collective motion
 - \(v_2(D) \approx v_2(\pi^\pm) \) for \(p_T > 3 - 4 \) GeV/c
 - Hint of \(v_2(D) < v_2(\pi^\pm) \) for \(p_T < 3 - 4 \) GeV/c

![Graph](ALICE Preliminary)

ALICE Preliminary

- 30–50% \(\text{Pb-Pb}, \sqrt{s_{NN}} = 5.02 \) TeV
- Prompt \(D^0, D^+, D^{**} \) average, \(|y|<0.8\)
- \(v_2 \) \{SP, \(|\Delta\eta|>0.9\}\)
- \(\pi^\pm, |y|<0.5\)
- \(v_2 \) \{SP, \(|\Delta\eta|>2\} \) JHEP 1809 (2018) 006
- Charged particles, \(|\eta|<0.8\)
- \(v_2 \) \{SP, \(|\Delta\eta|>2\} \) JHEP 07 (2018) 103

Syst. from data

Syst. from B feed-down

ICNFP 2019 | M. Masera
D-meson anisotropic transverse flow

- Charm produced isotropically in the early stage of the collision
 - azimuthal anisotropy (v_2) acquired by interactions with the QGP
- For HF, specifically at high p_T, parton energy loss is the driving factor of the observed anisotropy
- Positive D-meson v_2 in mid-central Pb-Pb collisions indicates participation of charm quark in the collective motion
 - $v_2(D) \simeq v_2(\pi^\pm)$ for $p_T > 3 - 4$ GeV/c
 - Hint of $v_2(D) < v_2(\pi^\pm)$ for $p_T < 3 - 4$ GeV/c
- Same v_2 for D_s^+ and non strange D mesons within uncertainties down to 3 GeV/c
D-meson anisotropic transverse flow

- Charm produced isotropically in the early stage of the collision
 - azimuthal anisotropy (v_2) acquired by interactions with the QGP
- For HF, specifically at high p_T, parton energy loss is the driving factor of the observed anisotropy
- Positive D-meson v_2 in mid-central Pb-Pb collisions indicates participation of charm quark in the collective motion
 - $v_2(D) \simeq v_2(\pi^\pm)$ for $p_T > 3 - 4$ GeV/c
 - Hint of $v_2(D) < v_2(\pi^\pm)$ for $p_T < 3 - 4$ GeV/c
- Same v_2 for D_s^+ and non strange D mesons within uncertainties down to 3 GeV/c
- $v_2(D) > v_2(J/\psi)$ for $p_T < 6$ GeV/c
 - charm-quark coalescence with flowing light-flavor quarks?
The significant J/ψ flow observed confirms the contribution of J/ψ production from recombination.

- Transport models including (re)generation component describe low p_T well.

v_2 at $p_T > 6$ GeV/c not described by transport models.

- v_2 of similar magnitude in this p_T range observed in p-Pb collisions.
- Same (unknown) origin?
The significant J/ψ flow observed confirms the contribution of J/ψ production from recombination:

- Transport models including (re)generation component describe low p_T well

- v_2 at $p_T > 6$ GeV/c not described by transport models
 - v_2 of similar magnitude in this p_T range observed in p-Pb collisions
 - Same (unknown) origin?

- Πάντα ρεῖ? Does everything flow?
 - First measurement of Υ (1S) elliptic flow: v_2 is compatible with 0
 - A small v_2 was predicted by transport model simulations:
 - The dissociation of the Υ in the medium occurs at higher temperature w.r.t. J/ψ
 - Early dissociation when path length differences are less influential
 - Negligible contribution from $b\bar{b}$ recombination
The significant flow observed confirms the contribution of production from recombination \(J/\psi \to \psi \). Transport models including (re)generation component describe low \(p_T \) at \(GeV/c \) not described by transport models.

\[v_2 \text{ at } p_T > 6 \text{ GeV} \]

\[v_2 \text{ of similar magnitude in this range observed in } p-Pb \text{ collisions} \]

\[\text{Same (unknown) origin?} \]

\[\text{Πάντα ρεῖ?} \]

First measurement of elliptic flow: \(v_2 \) is compatible with 0 \(\Upsilon(1S) \). A small \(v_2 \) was predicted by transport model simulations. The dissociation of the in the medium occurs at higher temperature w.r.t. \(\Upsilon J/\psi \). Early dissociation when path length differences are less influential. Negligible contribution from recombination.

Bottomonium particles don’t go with the flow

The first measurement, by the ALICE collaboration, of an elliptic-shaped flow for bottomonium particles could help shed light on the early universe.

16 JULY, 2019 | By Ana Lopes
Measurement of $\Upsilon(1S)$ elliptic flow at forward rapidity in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

Abstract

The first measurement of the $\Upsilon(1S)$ elliptic flow coefficient (v_2) is performed at forward rapidity ($2.5 < y < 4$) in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with the ALICE detector at the LHC. The results are obtained with the scalar product method and are reported as a function of transverse momentum (p_T) up to 15 GeV/c in the 5–60% centrality interval. The measured $\Upsilon(1S) v_2$ is consistent with zero and with the small positive values predicted by transport models within uncertainties. The v_2 coefficient in $2 < p_T < 15$ GeV/c is lower than that of inclusive J/ψ mesons in the same p_T interval by 2.6 standard deviations. These results, combined with earlier suppression measurements, are in agreement with a scenario in which the $\Upsilon(1S)$ production in Pb–Pb collisions at LHC energies is dominated by dissociation limited to the early stage of the collision whereas in the J/ψ case there is substantial experimental evidence of an additional regeneration component.
Final state interactions: rescattering

- In the **hadronic phase**:
 - **Regeneration**: resonances formed in hadron scattering
 - **Re-scattering** of decay daughters: signal loss
- ρ, K^*, Λ^* **reduced yield**: final state scattering of decay particles
- ϕ, Ξ^*: longer lifetime \rightarrow **constant yield**

Results are consistent with the existence of a hadronic phase

<table>
<thead>
<tr>
<th>Hadron</th>
<th>Lifetime (fm/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>1.3</td>
</tr>
<tr>
<td>K^*</td>
<td>4.2</td>
</tr>
<tr>
<td>Σ^*</td>
<td>5.5</td>
</tr>
<tr>
<td>Λ^*</td>
<td>12.6</td>
</tr>
<tr>
<td>Ξ^*</td>
<td>21.7</td>
</tr>
<tr>
<td>ϕ</td>
<td>46.2</td>
</tr>
</tbody>
</table>

Particle Yield Ratios

- K^0/K ($\times 1.2$)
- Σ^0/Λ ($\times 0.5$)
- $\Lambda(1520)/\Lambda$
- Σ^0/Ξ ($\times 0.08$)
- η/K ($\times 0.08$)

ALICE Preliminary
- pp $\sqrt{s} = 7$ TeV
- p-p $\sqrt{s}_{NN} = 5.02$ TeV
- Pb-Pb $\sqrt{s}_{NN} = 5.02$ TeV
- Xe-Xe $\sqrt{s}_{NN} = 5.44$ TeV

ALICE
- pp $\sqrt{s} = 2.76$ TeV
- p-p $\sqrt{s} = 7$ TeV
- p-Pb $\sqrt{s}_{NN} = 5.02$ TeV
- Pb-Pb $\sqrt{s}_{NN} = 2.76$ TeV

STAR
- pp $\sqrt{s} = 200$ GeV
- Au-Au $\sqrt{s}_{NN} = 200$ GeV

- EPOS3
- EPOS3 (UrQMD OFF)
Final state interactions: rescattering

- **In the hadronic phase:**
 - **Regeneration:** resonances formed in hadron scattering
 - **Re-scattering** of decay daughters: signal loss
- **ρ, K^*, Λ^* reduced yield:** final state scattering of decay particles
- **ϕ, Ξ^*** : longer lifetime \rightarrow constant yield

Results are consistent with the existence of a hadronic phase

ALICE Preliminary

- p^0/π ($\times 7.0$)
- K^{0s}/K ($\times 1.2$)
- Σ^+/Λ (>0.5)
- $\Lambda(1520)/\Lambda$
- Σ^0/Σ (>0.08)
- ϕ/K (>0.08)

Hadron	**Lifetime (fm/c)**
ρ | 1.3
K^* | 4.2
Σ^* | 5.5
Λ^* | 12.6
Ξ^* | 21.7
ϕ | 46.2
Final state interactions: correlations

- Femtoscopy: final-state momentum correlations.
- Sensitive to:
 - Space-time distribution of production points
 - Interaction and quantum statistics
- Traditionally femtoscopy is used to study the space-time characteristics of the emitting source ($S(\vec{r})$)
- Here we assume a common source, measure correlation $C(k^*)$ to study Hyperon-Nucleon and Hyperon-Hyperon interactions
- Relevant for nuclear EOS at $T=0$

ALICE: first observation of an attractive interaction between a proton and a multi-strange baryon (arXiv:1904.12198). Data set: p-Pb at 5.02 TeV
Final state interactions: correlations

- Data set: pp collisions at 13 TeV
- Source size identical for pp and p-Λ
- One common source distribution for all particle pairs
- Data agree with **HAL QCD potential**
Final state interactions: correlations

- Data set: pp collisions at 13 TeV
- Source size identical for pp and p-Λ
- One common source distribution for all particle pairs
- Data agree with HAL QCD potential
- HAL QCD: the nucleon-Ω system was studied in the 5S_2 channel

(T. Iritani et al. arXiv:1810.03416)
Hadrochemistry

- At the chemical freeze-out
 - Inelastic collisions cease
 - Abundances of different species of hadrons are fixed
- Hadron yields described by statistical / thermal models

Yields depend on
- masses/spin
- Chemical potentials
- Temperature

Hadron yields: statistical model

- Good experimental precision
- Overall good description of the data
 - Tensions with baryons and resonances
- Temperature and chemical potential:
 - $T = 152 \pm 3$ MeV
 - $\mu_B \approx 0$
- Agreement with Lattice QCD:
 - $T_{PC} = 156.5 \pm 1.5$ MeV

A.Bazavov et al. (Hot QCD)
arXiv:1812.08235

(*) QCD pseudo-critical temperature for chiral crossover at $\mu_B = \mu_S = \mu_Q = 0$
Strangeness production

- **Charged particle multiplicity** is the driving variable governing strangeness production.
- Charged particle multiplicity is a proxy for the system size.
- A smooth increase of strange hadrons w.r.t. pions with multiplicity is observed until saturation is reached.
- Consistent results for different collision systems and energies measured in ALICE: pp, p-Pb, Xe-Xe and Pb-Pb.
 - Common microscopic description?
- Strangeness enhancement with growing system size is consistent with its canonical suppression in small systems.
 - No longer seen as a smoking gun for QGP formation.
Strangeness production

- Charged particle multiplicity is the driving variable governing strangeness production.
- Charged particle multiplicity is a proxy for the system size.
- A smooth increase of strange hadrons w.r.t. pions with multiplicity is observed until saturation is reached.
- Consistent results for different collision systems and energies measured in ALICE: pp, p-Pb, Xe-Xe and Pb-Pb
 - Common microscopic description?
- Strangeness enhancement with growing system size is consistent with its canonical suppression in small systems
 - No longer seen as a smoking gun for QGP formation.

Much more on strangeness in M. Vasileiou’s talk This morning Room 2
Production of (anti-)deuterons

- Production of (anti-)(hyper-)nuclei is described by
 - Thermal models: they are emitted in statistical equilibrium at the chemical freeze-out
 - Coalescence models: they are formed at the kinetic freeze-out by coalescence of baryons close in phase space

- Both models describe particular aspects of the available data. As an example:
 - The d/p ratio has a smooth dependence on the multiplicity, independently on the collision system
 ✓ This may indicate a common production mechanism driven by the system size
 ✓ The ratio increases smoothly at low multiplicity → consistent with simple coalescence (d ∝ p²)
 ✓ It flattens at higher multiplicities → consistent with the thermal model
 ✓ The hint of suppression at the highest multiplicities is not significant with the present uncertainties
Production of (anti-)deuterons

• Production of (anti-)(hyper-)nuclei is described by
 ➡ Thermal models: they are emitted in statistical equilibrium at the chemical freeze-out
 ➡ Coalescence models: they are formed at the kinetic freeze-out by coalescence of baryons close in phase space

• Both models describe particular aspects of the available data. As an example:

 ➡ The d/p ratio has a smooth dependence on the multiplicity, independently on the collision system
 ✓ This may indicate a common production mechanism driven by the system size
 ✓ The ratio increases smoothly at low multiplicity → consistent with simple coalescence (d ∝ p^2)
 ✓ It flattens at higher multiplicities → consistent with the thermal model
 ✓ The hint of suppression at the highest multiplicities is not significant with the present uncertainties
Hard Probes of the QGP medium

- Produced at the **very early stage** of the collision in partonic scattering processes with large momentum transfer

- Traverse the hot and dense medium interacting with its constituents
 - The hard-scattered parton interacts with the medium constituents -> energy loss through:
 - Elastic collisions
 - Gluon radiation
 - Gluon radiation Energy loss depends on:
 - Medium density
 - Path-length in the medium
 - Parton species (gluon vs. quark) and mass

- Unique probes of the properties of the QGP
 - Tomography of the medium
A Large Ion Collider Experiment

Nuclear Modification Factor

- In nuclear collisions hard processes expected to scale with the number of binary collisions (N_{coll})

- The nuclear modification factor is defined as

$$R_{AA}(p_T) = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

- If no nuclear effects $R_{AA} = 1$

- In-medium energy loss $\rightarrow R_{AA} < 1$ at high p_T (jet quenching).

- $R_{pp} \sim 1$ at high p_T: no jet quenching in p-Pb collisions

- $R_{AA} < 1$ in Pb-Pb collisions

 - Jet quenching increases with centrality

- Open question: collectivity in p-A without energy loss

 - When does energy loss turns on?
R_{AA} and jet production

- Jets are reconstructed to lower momentum thanks to ML-based analysis tools
- Good agreement with standard analysis method at high p_T
- Substantial suppression of jets on the whole p_T range
- The suppression is large even when opening the jet cone
 - Interactions with the medium transport momentum to large angles

p_T spectra

R_{AA} - Jet radius R=0.2

R_{AA} - Jet radii R=0.4 and 0.6

- **ALICE** Pb-Pb 5.02 TeV, 0-10%
 - Charged jets, anti-k_T, $|\eta_{jet}| < 0.9 - R$
 - ML estimator trained on PYTHIA

- **ALICE** Pb-Pb 5.02 TeV, 0-10%
 - Charged jets, anti-k_T, $R = 0.2$, $|\eta_{jet}| < 0.7$
 - ML estimator trained on PYTHIA

- **ALICE** Pb-Pb 5.02 TeV, 0-10%
 - Charged jets, anti-k_T, $|\eta_{jet}| < 0.9 - R$
 - ML estimator trained on PYTHIA

- **ALICE** Preliminary
 - T_{AA} normalization uncertainty

- **ALICE** Preliminary
 - Hybrid model, $L_{res} = 0$
 - $R = 0.4$
 - $R = 0.6$
R_{AA} and jet production

- Jets are reconstructed to lower momentum thanks to ML-based analysis tools
- Good agreement with standard analysis method at high p_T
- Substantial suppression of jets on the whole p_T range
- The suppression is large even when opening the jet cone
 - Interactions with the medium transport momentum to large angles

More on HF jets in A. Isakov’s talk on August, 22nd

p_T spectra

ALICE Pb-Pb 5.02 TeV, 0-10%
Charged jets, anti-k_T, $|\eta_{jet}| < 0.9 - R$
ML estimator trained on PYTHIA

- $R = 0.2$
- $R = 0.4$
- $R = 0.6$

R_{AA} - Jet radius $R=0.2$

ALICE Pb-Pb 5.02 TeV, 0-10%
Charged jets, anti-k_T, $R = 0.2$, $|\eta_{jet}| < 0.7$
ML estimator trained on PYTHIA
- ML-based
- Area-based ($p_{T,lead} > 5 \text{ GeV/c, POWHEG ref.}$)

R_{AA} - Jet radii $R=0.4$ and 0.6

ALICE Pb-Pb 5.02 TeV, 0-10%
Charged jets, anti-k_T, $|\eta_{jet}| < 0.9 - R$
ML estimator trained on PYTHIA
- $R = 0.4$
- $R = 0.6$

N_{coll} uncertainty not shown
ALICE Preliminary
D mesons R_{AA}

- D-meson R_{AA} larger than pion R_{AA} for $p_T < 8$ GeV/c
- Described by models including
 - Energy loss hierarchy: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c$
 - Different p_T shapes of produced partons
 - Different fragmentation functions of gluons, light and charm quarks

![Graph showing R_{AA} as a function of p_T]
D mesons R_{AA}

- D-meson R_{AA} larger than pion R_{AA} for $p_T < 8$ GeV/c
- Described by models including
 - Energy loss hierarchy: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c$
 - Different p_T shapes of produced partons
 - Different fragmentation functions of gluons, light and charm quarks
- Low p_T D-meson R_{AA} described by transport models based on Boltzmann/Fokker-Plank/Langevin equations
D mesons R_{AA}

- D-meson R_{AA} larger than pion R_{AA} for $p_T < 8$ GeV/c
- Described by models including
 - Energy loss hierarchy: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c$
 - Different p_T shapes of produced partons
 - Different fragmentation functions of gluons, light and charm quarks
- Low p_T D-meson R_{AA} described by transport models based on Boltzmann/Fokker-Plank/Langevin equations
- High p_T D-meson R_{AA} described by pQCD-based models
D mesons R_{AA}

- D-meson R_{AA} larger than pion R_{AA} for $p_T < 8$ GeV/c
- Described by models including
 - Energy loss hierarchy: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c$
 - Different p_T shapes of produced partons
 - Different fragmentation functions of gluons, light and charm quarks
- Low p_T D-meson R_{AA} described by transport models based on Boltzmann/Fokker-Plank/Langevin equations
- High p_T D-meson R_{AA} described by pQCD-based models
- Higher R_{AA} for D_s^+ as expected from statistical hadronization model
D mesons R_{AA}

- D-meson R_{AA} larger than pion R_{AA} for $p_T < 8$ GeV/c
- Described by models including:
 - Energy loss hierarchy: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c$
 - Different p_T shapes of produced partons
 - Different fragmentation functions of gluons, light and charm quarks
- Low p_T D-meson R_{AA} described by transport models based on Boltzmann/Fokker-Plank/Langevin equations
- High p_T D-meson R_{AA} described by pQCD-based models
- Higher R_{AA} for D_s^+ as expected from statistical hadronization model

Much more on D mesons in F. Catalano’s talk on August, 24th
D mesons R_{AA} and elliptic flow

- Simultaneous comparison of R_{AA} and v_2 to models can constrain QGP properties and the description of charm-quark interaction and diffusion in the medium
- Interplay of Cold Nuclear Matter effects, collisional and radiative energy loss, hadronization via coalescence and fragmentation and realistic underlying medium evolution required to describe data

![Graph 1](ALICE Preliminary)

R_{AA} for 0–10% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
Prompt D^0, D^+, D^{**} average, $|y| < 0.5$

![Graph 2](ALICE Preliminary)

v_2 for $30–50\%$ Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
- Prompt D^0, D^+, D^{**} average
- Open markers: p_T-extrapolated reference
- Filled markers: pp measured reference

![Graph 3](ALICE Preliminary)

v_2 for $|y| < 0.8$
- p_T (GeV/c) range from 5 to 35
Λ_c production

- Λ_c/D^0 ratio in pp:
 - Significantly larger than from $e^+ + e^-$ expectations
- Λ_c/D^0 ratio in Pb-Pb:
 - Enhanced at low p_T (<6 GeV/c) with respect to pp
 - Compatible with pp results for $p_T > 10$ GeV/c
 - Consistent with a scenario of baryon enhancement due to charm quark hadronization via recombination
ALICE @ LHC Runs 3 and 4

- ALICE will exploit its specific potentials:
 - Tracking & PID
 - Low p_T reach
- ALICE aims to carry out high precision measurements of
 - heavy flavor and quarkonia
 - jets
 - low-mass dileptons
 - light (hyper-)nuclei
- The Pb-Pb data sample in Runs 3 and 4 is expected to increase by an order of magnitude w.r.t. Run 2

Run 2: $\mathcal{L}_{\text{Pb-Pb}} = 1.0$ nb$^{-1}$
Run 3: $\mathcal{L}_{\text{Pb-Pb}} = 6.0$ nb$^{-1}$
Run 4: $\mathcal{L}_{\text{Pb-Pb}} = 7.0$ nb$^{-1}$
ALICE @ LHC Runs 3 and 4

• ALICE will exploit its specific potentials:
 ➡ Tracking & PID
 ➡ Low \(p_T \) reach

• ALICE aims to carry out high precision measurements of
 ➡ heavy flavor and quarkonia
 ➡ jets
 ➡ low-mass dileptons
 ➡ light (hyper-)nuclei

• The Pb-Pb data sample in Runs 3 and 4 is expected to increase by an order of magnitude w.r.t. Run 2

<table>
<thead>
<tr>
<th>Year</th>
<th>LS1</th>
<th>LS2</th>
<th>LS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Run 2: \(\mathcal{L}_{\text{Pb-Pb}} = 1.0 \, \text{nb}^{-1} \)
Run 3: \(\mathcal{L}_{\text{Pb-Pb}} = 6.0 \, \text{nb}^{-1} \)
Run 4: \(\mathcal{L}_{\text{Pb-Pb}} = 7.0 \, \text{nb}^{-1} \)
A Large Ion Collider Experiment

Ongoing upgrades

Inner Tracking System

Time Projection Chamber

Fast Interaction Trigger

Requirements

- operation at high interaction rates (50 kHz of Pb–Pb collisions)
- continuous (i.e. untriggered) read-out for core detectors
Timeline

- TPC remove MWPC ROC
- TPC survey
- ITS construction and assembly complete
- ITS IB construction complete commissioning beginning on ground
- MFT disk production complete
- TPC QEM ROC installation
- TPC irradiation tests
- ITS on ground commissioning ends
- ITS, MFT, FIT installation begins
- LHC commissioning begins

- May 19
- Aug’ 19
- Oct’ - Dec’ 19
- Feb’ 20
- May 20
- Feb’ 21
Conclusions

- LHC Run2 is yielding a rich harvest of physics results.
- ALICE has a broad physics program comprising \textit{pp, p-Pb and Pb-Pb} collision systems to study QCD in its non perturbative regime.
- Small collision systems turned out to be \textit{a lot more than a mere comparison} for Pb-Pb studies, providing interesting results (e.g. collectivity, strangeness production) and posing new questions.
- The analysis of the data collected in Run 2 is advancing at full blast and several new results have been presented this summer.
- \textbf{Run 2 results constrain}
 - Initial stage from azimuthal anisotropies and UPC
 - QGP transport parameters, such as shear viscosity, quark diffusion and energy loss
- \textbf{Impressive progress in understanding QCD} at high temperature and energy density: LHC Runs 3 & 4 will provide unprecedented \textit{precision} to move further
 - The construction and commissioning activities for the LHC Run 3 are proceeding on schedule.
 - We look forward to starting a new data taking campaign in 2021!
Conclusions

- LHC Run2 is yielding a rich harvest of physics results.
- ALICE has a broad physics program comprising \textit{pp, p-Pb and Pb-Pb} collision systems to study QCD in its non perturbative regime.
- Small collision systems turned out to be \textit{a lot more than a mere comparison} for Pb-Pb studies, providing interesting results (e.g. collectivity, strangeness production) and posing new questions.
- The analysis of the data collected in Run 2 is advancing at full blast and several new results have been presented this summer.
- \textbf{Run 2 results constrain}
 - Initial stage from azimuthal anisotropies and UPC
 - QGP transport parameters, such as shear viscosity, quark diffusion and energy loss
- \textbf{Impressive progress in understanding QCD} at high temperature and energy density: LHC Runs 3 & 4 will provide unprecedented \textbf{precision} to move further
 - The construction and commissioning activities for the LHC Run 3 are proceeding on schedule.
 - We look forward to starting a new data taking campaign in 2021!

Σας ευχαριστώ για την προσοχή σας
Additional material
Blast-wave fits - details

- A simultaneous fit to transverse momentum spectra of π^\pm, K^\pm and $p + \bar{p}$ is carried out.

- The Blast-Wave functional form is given by:

$$\frac{1}{p_T} \frac{dN}{dp_T} \propto \int_0^R rdr m_T I_0 \left(\frac{p_T \sinh \rho}{T_{kin}} \right) K_1 \left(\frac{m_T \cosh \rho}{T_{kin}} \right)$$

Where ρ is the velocity profile and it is described as

$$\rho = \tanh^{-1} \beta_T \quad \text{with} \quad \beta_T(r) = \left(\frac{r}{R} \right)^n \beta_s$$

- The free parameters of the fit (in red color above) are:
 - The kinetic freeze-out temperature T_{kin}
 - The expansion transverse velocity β_s at the surface of the fireball
 - The exponent n of the velocity profile

I_0 and K_0 are modified Bessel functions
R is the radius of the fireball
$m_T = \sqrt{p_T^2 + m^2}$ is the transverse mass
Blast-wave fits - details

- The Blast-Wave parameterization assumes a locally thermalized medium, expanding collectively with a common velocity field and undergoing an instantaneous common freeze-out.

- A simultaneous fit to transverse momentum spectra of π, K, p, and \bar{p} is carried out.

- The Blast-Wave functional form is given by:

$$ \frac{1}{N_{\text{ev}}} \frac{d^2 N}{d^2 p_T} (\text{GeV}/c)^2 $$

$$ \rho(r) = \frac{1}{p_T} W(r) $$

$$ \frac{\rho}{T} : $$

$$ T_0 $$

$$ \frac{1}{p_T} $$

$$ W $$

- The kinetic freeze-out temperature T_{kin}
- The expansion transverse velocity v_s
- The exponent n of the velocity profile $\pi^+ + \pi^-(\times 100)$ $K^+ + K^-(\times 10)$ $p + \bar{p}(\times 1)$

- The free parameters of the fit (in red color above) are:
 - T_{kin}
 - v_s
 - n

- ALICE, arXiv:1807.11321
v_n and models

iEBE-VISHNU **hydrodynamical calculations** describe the measured v_n of π^\pm, K^\pm and $p + \bar{p}$ fairly well for $p_T < 2.5$ GeV/c, while MUSIC reproduces the measurements for $p_T < 1$ GeV/c.

![Graph](image-url)

And references therein for the models.
v_n and models

iEBE-VISHNU hydrodynamical calculations describe the measured v_n of π^\pm, K^\pm and $p + \bar{p}$ fairly well for $p_T < 2.5$ GeV/c, while MUSIC reproduces the measurements for $p_T < 1$ GeV/c.

K^\pm
\(v_n \) and models

iEBE-VISHNU hydrodynamical calculations describe the measured \(v_n \) of \(\pi^\pm, K^\pm \) and \(p + \bar{p} \) fairly well for \(p_T < 2.5 \) GeV/c, while MUSIC reproduces the measurements for \(p_T < 1 \) GeV/c.

\[p + \bar{p} \]
\(v_n \) scaling properties

- To test the hypothesis of particle production by coalescence both \(v_n \) and \(p_T \) are divided by the number of constituent quarks \(n_q \).
- For \(p_T/n_q > 1 \text{ Gev/c} \) the scaling is approximate.
- Deviations from perfect scaling in the range of
 - \(\pm 15\% - \pm 20\% \) for \(v_2 \)
 - \(\pm 20\% \) for \(v_3 \) and \(v_4 \)

![Graph showing \(v_2 \) scaling properties](image-url)
• Mid-rapidity and forward rapidity results exhibit comparable suppression at high p_T

• Stronger R_{AA} increase towards lower p_T for mid-rapidity
 → (re)generated J/ψ concentrated at low p_T at mid-rapidity

• Trend described by transport and statistical hadronization model within the current experimental and theoretical uncertainties