Searches for SUSY with the CMS experiment

Myriam Schönenberger
ETH Zürich

for the CMS collaboration

ICNFP2019, Κολυμβάρι
26 August 2019
The CMS detector
Why Supersymmetry?

Fine Tuning problem

\[(125\text{GeV})^2 = m_H^2 = m_{H,0}^2 + \Delta m_H^2\]

\[\propto \sum_f -g_f \Lambda_{UV} \quad \text{can be as large as } \Lambda_{Planck}\]

SUSY Solution:

For each fermion add a diagram with a scalar to cancel \(\Delta m_H^2\)

\[\rightarrow \text{introduce for each fermion a scalar}\]

(and vice versa)
What is SUSY?

\[Q |\text{Boson}\rangle = |\text{Fermion}\rangle, \quad Q |\text{Fermion}\rangle = |\text{Boson}\rangle \]

- Broken symmetry: heavier masses
Bonus I: Gauge unification

- Gauge unification of the strong, EM and weak force
Bonus II: Dark Matter Candidate

- Baryon (B) and lepton (L) quantum numbers seem intrinsically fermionic, but not nec. in SUSY
 \[Q |\text{Boson}\rangle = |\text{Fermion}\rangle, \quad Q |\text{Fermion}\rangle = |\text{Boson}\rangle \]

- need to forbid direct exchanges of squarks and sleptons between ordinary quarks and leptons
 \[\rightarrow \text{introduce a } B\&L \text{ for bosonic superpartners} \]

- R parity = \((-1)^R = (-1)^{2S}(-1)^{3B+L} = \{ \]
 - 1 for SM particle
 - -1 for SUSY partner

- R-parity conserved:
 - SUSY particles produced in pairs
 - Lightest SUSY particle (LSP) stable = WIMP candidate
How does SUSY compare to the SM?

Largest cross sections for strong production = gluinos & squarks → discovery channel at energy frontier

Electroweak and slepton production lower cross sections, but generally cleaner signatures with leptons
Simplified models of SUSY

- Not possible to scan the whole MSSM space
 - Huge phase space
 - many cascade decays

- Consider only simple decay chains
- Generally on only 2 parameters:
 - heavy mother particle
 - lightest supersymmetric particle (LSP) that is not directly detectable

- 100% branching ratio (unless otherwise indicated)
Diverse final states allow to target various production and decay channels

Focus of today's talk are the latest results with the Run2 dataset

Myriam Schönenberger, ETH Zürich
Inclusive hadronic searches: Sensitivity to a large phase space

- Cover various strong production models
- Sensitivity though binning in jet & b-jet, H_T, M_{E_T} etc..

$H_T = \sum jets \mid \vec{p}_T \mid$

$H_{miss} = \mid - \sum jets \vec{p}_T \mid$

$M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_{miss}} \max(M_T^{(1)}, M_T^{(2)})$

SUS-19-006 & SUS-19-005
Main backgrounds

- **QCD multi-jet:**
 - Mis-measurement of a jet leads to imbalanced event
 - Estimated with rebalance & smear technique

- **W+jets & ttbar (Lost lepton):**
 - ME_T from neutrino from leptonic W decay
 - Charged lepton not caught by veto
 - Estimated from 1lepton data control region

- **$Z_{\nu\nu}$+jets:**
 - ME_T from the two neutrinos
 - Estimated from γ+jets or $Z\rightarrow ll$
Interpretation in gluino & squark production

- Full Run2 dataset analyzed
- Reach masses of over 2 TeV
Single lepton search

- 1 lepton $p_T^{\text{miss}}, S_T, N_j, N_b, M_J$

$$M_J = \sum_{J_i=\text{large-}R\text{ jets}} m(J_i)$$

$$m_T = \sqrt{2p_T^{\ell}p_T^{\text{miss}}} [1 - \cos(\Delta\phi_\ell, p_T^{\text{miss}})]$$

- Main background from leptonic decays of $t\bar{t}$ estimated with ABCD in M_J and m_T plane
2 same sign leptons & multilepton search

- Signal regions by number of leptons and their p_T, H_T, p_T^{miss}, m_T, N_j, N_b

- Main backgrounds:
 - Non-prompt leptons from W+jets & QCD
 - Rare SM: ttV, WW, WZ

- Low thresholds for the leptons (15/10 for e/μ) give sensitivity to small mass splittings

SUS-19-008
Interpretation in gluino & squark production

Sensitivity to leptonic decays of EW bosons produced in the decay chains
Interpretation in R-parity violating models

- R parity not conserved: lightest SUSY particle **not** stable
 - no LSP in the final state
Dedicated stop search in 1 lepton final state

- Signal regions: H_T, H_T^{miss}, N_j, N_b and top-tagging (resolved and boosted)

- Main backgrounds:
 - 2-lepton events where 1-lepton is lost (ttbar+single top): estimated from 2 lepton control region in data
 - W+jets: estimated from 0b data control region
Stop → tau decays

- Signal regions: H_T, p_T^{miss}, M_{T2}

- Main backgrounds:
 - Taus from ttbar decays
 - Misidentified jet as a tau

- Sensitive to $\tan\beta$ and higgsino-like scenarios

\[m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0} = x \left(m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \right) \]

\[x = [0.25, 0.5, 0.75] \]

SUS-19-003

Myriam Schönenberger, ETH Zürich
Tau slepton search

- Signal regions: $\tau_h \tau_h$ & $l\tau_h$ ($l=e,\mu$)

- Machine learning used to improve previous results
 - DNN for $\tau_h \tau_h$
 - Boosted decision tree for $l\tau_h$

\[\chi^0_1 \text{ mass}\]
Search with $H \rightarrow \gamma\gamma$ in the cascade

- Search for excess on Higgs peak
- **Non resonant background** from fit to data
- **SM Higgs** and **Signal** shapes from simulation
- Simultaneous fit of signal & background

SUS-18-007
Target Signals

One boson per cascade produced
- At least one $H \rightarrow \gamma \gamma$
- Use other boson as additional discriminant against SM: $H \rightarrow bb$, $Z \rightarrow bb$, $Z \rightarrow ll$, $W \rightarrow ev$, $W \rightarrow \mu\nu$
- Additional b jets for sbottom quark model
Search with $H \rightarrow \gamma\gamma$ in the cascade

- Two approaches targeting strong (SP) and electroweak (EWP) production models
Long-lived SUSY particles

- Displaced vertices: 0.1-1mm
- Disappearing tracks: ~10cm
- Stable: 1-10m
Long-lived particles: Disappearing tacks

- Extension of the fully hadronic M_{T2} analysis
- Categorizing in length of the track:
 Short (pixel only), medium (<7 hits), long (>7 hits)
 & track p_T

Main backgrounds from:
- charged pions & leptons that
 - significantly interact with tracker
 or
 - poorly reconstructed
- Fake tracks
Long-lived particles: Disappearing tacks

- gluino branching fraction is 1/3 each for $\tilde{\chi}_1^0$, $\tilde{\chi}_1^+$ and $\tilde{\chi}_1^-$
- Mass of $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_1^0$ assumed to differ by only a few hundred MeV
- momentum of pion only a few hundred MeV

$\tau = 10\text{ cm}$, $\tau = 50\text{ cm}$, $\tau = 2\text{ m}$

CMS Preliminary 137 fb$^{-1}$ (13 TeV)
Conclusions

- Showed the latest results of SUSY searches at the CMS experiment with the Run2 dataset
 - More results to come with the full Run2 dataset!

- No significant excess over background predictions were found
 → set exclusion limits on various simplified models of SUSY

- Factor of 20 in integrated luminosity still to come with the HL-LHC

- We're at about 60% of the mass reach with the LHC
BACK UP
Electroweak composition

- Cross section depends on the bino/wino/higgsino composition

<table>
<thead>
<tr>
<th>Bino</th>
<th>Wino</th>
<th>Higgsino</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{q}_{L,R}$</td>
<td>$\tilde{q}_{L,R}$</td>
<td>$\tilde{q}_{L,R}$</td>
</tr>
<tr>
<td>$\tilde{H}_{u,d}$</td>
<td>$\tilde{L}_{3,4}/\tilde{\chi}_2^\pm$</td>
<td>$\tilde{H}_{u,d}$</td>
</tr>
<tr>
<td>\tilde{W}</td>
<td>$\tilde{L}_{2}/\tilde{\chi}_1^\pm$</td>
<td>\tilde{W}</td>
</tr>
<tr>
<td>\tilde{B}</td>
<td>$\tilde{\chi}_1^0$</td>
<td>\tilde{B}</td>
</tr>
</tbody>
</table>

arxiv 1902.11267
QCD Estimate: Rebalance and Smear

Rebalance jets to true hard scatter event with \(ME_T \approx 0 \)

Smear jets according to response

QCD multi-jet events have no intrinsic \(ME_T \), only instrumental \(ME_T \) due to detector response that depends on \(\eta \) & \(p_T \) of jets

Good agreement with out of the box simulation

Myriam Schönenberger, ETH Zürich