

HELLENIC REPUBLIC National and Kapodistrian University of Athens



# Strangeness production with ALICE at the LHC

Maria Vasileiou on behalf of the ALICE Collaboration National and Kapodistrian University of Athens Physics Department







- Introduction
- ALICE Detector and PID
- Strange particle detection
- Strangeness production in pp, p-Pb, Xe-Xe and Pb-Pb collisions:
  - transverse momentum spectra
  - baryon-to-meson ratios
  - strangeness enhancement

#### Conclusions

# **Introduction**



ALICE is designed to study the physics of strongly interacting matter under extremely high

temperature and energy density conditions to investigate the properties of the quark-gluon

plasma (QGP). The Experiment has collected data from:

#### > pp collisions at $\sqrt{s} = 0.9, 2.76, 5.02, 7, 8, 13$ TeV

- Test QCD inspired models
- Search for collective effects in small systems
- Provide reference for p-Pb and Pb-Pb data
- > p-Pb collisions at  $\sqrt{s_{NN}} = 5.02, 8.16 \text{ TeV}$ 
  - Discriminate between initial (cold nuclear matter) and final state (QGP) effects
  - Search for collective effects in small systems
  - Provide reference for Pb-Pb data
- > Xe-Xe collisions at  $\sqrt{s_{NN}} = 5.44 \text{ TeV}$ 
  - Study the colliding system size dependence
- > **Pb-Pb collisions at**  $\sqrt{s_{NN}} = 2.76, 5.02 \text{ TeV}$ 
  - Study QGP properties and its evolution









ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

<u>ITS</u>



Inner Tracking System:

2 layers of Silicon Pixel Detector (SPD)2 layers of Silicon Drift Detector (SDD)2 layers of Silicon Strip Detector (SSD)

- Drift and Strip Detectors provide a measurement of the ionization energy loss
- PID to very low p<sub>T</sub>: pions down to 100 MeV/c with stand-alone tracking





- PID via dE/dx in gas Ar/CO<sub>2</sub> (90:10) – up to 159 samples
- Truncated mean dE/dx calculated and used for particle identification (PID) in a wide momentum range
- Largest π/K and K/p separation achieved at low p (< 2.0 GeV/c)</p>

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044







ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

> At high  $p_{T}$  : particles separated on a statistical basis via multi-Gaussian fits





# <u>TOF</u>



- <u>Time Of Flight</u>: Multigap Resistive Plate Chambers (MRPC) PID at intermediate momenta
- ➢ Resolution ∼ 80 ps





#### **Centrality Selection in Pb-Pb Collisions**



ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

- Event centrality classes are defined based on the amplitude measured in the V0 scintillators placed at : 2.8<η<5.1 (V0A) and -3.7<η<-1.7 (V0C)</p>
- > Curve: Glauber model fit to the measurement



### **Strange particle detection**





- $$\begin{split} K^0_S &\to \pi^+ + \pi^- \text{ (B.R. 69.2\%)} \\ \Lambda &\to p + \pi^- \text{ (B.R. 63.9\%)} \\ \overline{\Lambda} &\to \overline{p} + \pi^+ \text{ (B.R. 63.9\%)} \end{split}$$
- $$\begin{split} &\Xi^- \to \Lambda + \pi^- \to p + \pi^- + \pi^- \text{ (B.R. 63.9\%)} \\ &\overline{\Xi}^+ \to \overline{\Lambda} + \pi^+ \to \overline{p} + \pi^+ + \pi^+ \text{ (B.R. 63.9\%)} \\ &\Omega^- \to \Lambda + K^- \to p + \pi^- + K^- \text{ (B.R. 43.3\%)} \\ &\overline{\Omega}^+ \to \overline{\Lambda} + K^+ \to \overline{p} + \pi^+ + K^+ \text{ (B.R. 43.3\%)} \end{split}$$

- Topological decay reconstruction
- Geometrical and kinematical selections
- Invariant mass analysis

### **Pb-Pb Collisions**



### **Strangeness enhancement**



ALICE, Phys. Lett. B 728 (2014) 216

- Enhanced production of strange particles in A-A collisions w.r.t. pp
- Enhancement increases with the strangeness content of the particle
- Decreasing trend with increasing energy, as a result of (canonical) suppression in pp collisions

### **Strangeness enhancement**



- In pp collisions the production of strangeness relative to pions is larger at the LHC
- Increase of strangeness production measured in Pb-Pb w.r.t. pp collisions
- Saturation of the ratios for large number of participants
- Values consistent with statistical hadronization models







### **Transverse momentum spectra**



Hardening of the spectra with increasing centrality

More pronounced for heavier particles (radial flow)



### **Transverse momentum spectra**



#### Same pattern for multi-strange hadrons



### **Baryon to meson ratios**



- Same features in Pb-Pb collisions at both energies
- > We observe a depletion at low  $p_T$  and an enhancement at intermediate  $p_T$
- Recombination model approximately reproduces the shape but overestimates the baryon enhancement by about 15%
- $\succ$  EPOS describes the dependence over the entire  $p_{\rm T}$  range



### **Baryon to meson ratios**



- Similarities in the evolution across different systems
- > We observe a depletion at low  $p_T$  and an enhancement at intermediate  $p_T$

# **pp Collisions**

### Transverse momentum spectra



- Shape evolution similar to Pb-Pb
- Hardening of p<sub>T</sub> spectra with increasing multiplicity

ALICE

- Hardening more pronounced for highermass particles
- In Pb-Pb collisions such behavior explained by hydrodynamical models

ALICE, Nature Physics 13 (2017) 535



#### **Transverse momentum spectra**



Same pattern as observed in pp@7Tev



Same pattern as observed in pp@7Tev





I TCF

- > Yields of strange hadrons increase linearly with the charged particle multiplicity
- Same trend in pp@7 TeV and pp@13 TeV
- > The abundance of strange hadrons seems to be invariant with the collision energy

### **Strange-to-pion yields**



- Enhancement of strange to non-strange hadron production from pp to most central Pb-Pb collisions
- Steeper slope with more strange content
- Almost saturated trend in most central Pb-Pb collisions for all particles
- Origin of strangeness production in Pb-Pb collisions driven by the final state rather than by the collision system or energy
- QCD inspired models fail to describe the data

### **Baryon-to-meson ratio**





ALICE, Nature Physics 13 (2017) 535

- ➤ Yield ratios do not change significantly with multiplicity → the observed enhanced production rates of strange hadrons w.r.t. pions is not due to the difference in the hadron masses
  - None of the MC models can describe all particle ratios simultaneously

### **Strangeness enhancement**



ALICE, Nature Physics 13 (2017) 535

- Yield ratios to pions divided by the values measured in the inclusive pp sample
- The observed multiplicity dependent enhancement follows a hierarchy determined by the hadron strangeness



### pp, p-Pb, Xe-Xe, Pb-Pb Collisions

### **Strangeness enhancement**



Results from <u>Xe-Xe@5.44</u> TeV collisions
follow the trend observed in Pb-Pb collisions

I TCF

Strange particle production is collision energy independent at similar multiplicity



### **Strange resonance production**



#### ALICE, Eur. Phys. J. C77 (2017) 389

➢ For the small collision systems the ratio of baryonic resonance to stable particle with same strangeness content has no multiplicity dependence



### **Strangeness production**



ALICE, Eur. Phys. J. C77 (2017) 389

Increasing pattern depends only on strangeness content and not on particle mass: enhancement of higher mass resonances is the same as for the lower mass groundstate particle with the same strangeness content

## **Conclusions**



- ALICE has measured strangeness production in pp, p-Pb, Xe-Xe and Pb-Pb collisions.
- In Pb-Pb collisions a hardening of strange hadron transverse momentum spectra is observed, with increasing centrality (radial flow).
- Similar effect measured in pp@7, 13 TeV collisions, with increasing multiplicity.

## **Conclusions**



- Strangeness enhancement is observed in high multiplicity pp collisions.
- Strange-to-pion ratios evolve smoothly with charged particle multiplicity, regardless collisions system and energy.
- Strangeness enhancement has been studied with resonances. In small systems the enhancement as a function of multiplicity, is found to be driven by strangeness content.



HELLENIC REPUBLIC National and Kapodistrian University of Athens



### Thank you!

