

arXiv:1907.02588

arXiv:1907.05450

ICNFP 2019 Crete

Milan Stojanovic¹, Jovan Milosevic¹, Laslo Nadderd¹, Predrag Cirkovic¹, Milos Dordevic¹, Fuqiang Wang^{2,3}, Xiangrong Zhu²

> ¹University of Belgrade ²Huzhou University ³Purdue University

Heavy Ion Collisions

Heavy Ion Collisions

Lenticular shape \rightarrow space anisotropy

Milan Stojanovic

Heavy Ion Collisions

Lenticular shape \rightarrow space anisotropy \rightarrow momentum anisotropy

Milan Stojanovic

Elliptic Flow

Naïve picture:

System symmetry \rightarrow Elliptic flow

$$v_2 = \langle (p_x/p_T)^2 - (p_y/p_T)^2 \rangle = \langle \cos 2(\phi - \Psi) \rangle$$

Eccentricity:

$$\varepsilon_{2,RP} = \frac{\langle y^2 - x^2 \rangle}{\langle x^2 + y^2 \rangle}$$

Linearity:

$$v_2 = K_2 \varepsilon_2$$

Elliptic Flow

Triangular Flow

 $\text{Event-by-event fluctuations} \rightarrow \text{Triangular eccentricity}$

Phys.Rev. C78, 014901 (2008)

$$\varepsilon_{3} \equiv \frac{\sqrt{\langle r^{2} \cos(3\phi_{\text{part}}) \rangle^{2} + \langle r^{2} \sin(3\phi_{\text{part}}) \rangle^{2}}}{\langle r^{2} \rangle}$$

$$v_{3} \equiv \langle \cos(3(\phi - \psi_{3})) \rangle$$

$$v_{3} = K_{3}\varepsilon_{3}$$

$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_{n} \cos[n(\phi - \Psi_{n})]$$

Phys. Rev. C 81, 054905 (2010); C 82 039903 (2010)

Milan Stojanovic

Flow Correlations & Fluctuations

$$V_{4} = V_{4L} + \chi_{422}(V_{2})^{2}$$

$$V_{5} = V_{5L} + \chi_{523}V_{2}V_{3}$$

$$V_{6} = V_{6L} + \chi_{6222}(V_{2})^{3} + \chi_{633}(V_{3})^{2}$$

$$V_{7} = V_{7L} + \chi_{7223}(V_{2})^{2}V_{3},$$

$$V_{7} = V_{7L} + \chi_{7223}(V_{2})^{2}V_{3},$$

$$V_{7} = V_{7} + \chi_{72} + \chi_{7223}(V_{2})^{2}V_{3},$$

$$V_{7} = V_{7} + \chi_{72} + \chi_{722} + \chi_{722} + \chi_{72} + \chi_{$$

Flow Correlations & Fluctuations

$$V_{4} = V_{4L} + \chi_{422}(V_{2})^{2}$$

$$V_{5} = V_{5L} + \chi_{523}V_{2}V_{3}$$

$$V_{6} = V_{6L} + \chi_{6222}(V_{2})^{3} + \chi_{633}(V_{3})^{2}$$

$$V_{7} = V_{7L} + \chi_{7223}(V_{2})^{2}V_{3},$$

$$V_{7} = V_{7L} + \chi_{7223}(V_{2})^{2}V_{3},$$

$$V_{7} = V_{7} + \chi_{72} + \chi_{7223}(V_{2})^{2}V_{3},$$

$$V_{7} = V_{7} + \chi_{72} + \chi_$$

- \succ V_n coefficients driven by:
 - Initial geometry;
 Medium properties.

Flow Correlations & Fluctuations

$$V_{4} = V_{4L} + \chi_{422}(V_{2})^{2}$$

$$V_{5} = V_{5L} + \chi_{523}V_{2}V_{3}$$

$$V_{6} = V_{6L} + \chi_{6222}(V_{2})^{3} + \chi_{633}(V_{3})^{2}$$

$$V_{7} = V_{7L} + \chi_{7223}(V_{2})^{2}V_{3},$$
Phys. Lett. **B** 744 (2015) 82
Linear part (from ε_{n}) Nonlinear part (from $\varepsilon_{2}, \varepsilon_{3}$)

- \succ v_n coefficients driven by:
 - Initial geometry;
 Medium properties.
- \succ Initial eccentricity fluctuations \rightarrow Flow fluctuations
- > Different averaging of flow over the events: way to probe initial fluctuations

Two-particle correlations method

Fourier fit of 1D distribution:

$$\frac{1}{N_{trig}}\frac{dN^{pair}}{d\Delta\phi} = \frac{N_{assoc}}{2\pi} \Big\{ 1 + \sum_{n} 2V_{n\Delta}\cos(n\Delta\phi) \Big\}$$

Two-particle correlations method

Fourier fit of 1D distribution:

$$\frac{1}{N_{trig}}\frac{dN^{pair}}{d\Delta\phi} = \frac{N_{assoc}}{2\pi} \Big\{ 1 + \sum_{n} 2V_{n\Delta}\cos(n\Delta\phi) \Big\}$$

Flow harmonics:
$$v_n = \sqrt{V_{n\Delta}}$$

Multi-particle cumulants method

Multi-particle correlators:

$$\begin{split} \langle \langle 2 \rangle \rangle &= \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle, \\ \langle \langle 4 \rangle \rangle &= \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle, \\ \langle \langle 6 \rangle \rangle &= \langle \langle e^{in(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)} \rangle \rangle, \\ \langle \langle 8 \rangle \rangle &= \langle \langle e^{in(\phi_1 + \phi_2 + \phi_3 + \phi_4 - \phi_5 - \phi_6 - \phi_7 - \phi_8)} \rangle \rangle \end{split}$$

Multi-particle cumulants:

$$\begin{split} c_n\{4\} &= \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2, \\ c_n\{6\} &= \langle \langle 6 \rangle \rangle - 9 \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle + 12 \langle \langle 2 \rangle \rangle^3, \\ c_n\{8\} &= \langle \langle 8 \rangle \rangle - 16 \langle \langle 2 \rangle \rangle \langle \langle 6 \rangle \rangle - 18 \langle \langle 4 \rangle \rangle^2 \\ &+ 144 \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle^2 - 144 \langle \langle 2 \rangle \rangle^4. \end{split}$$

Flow harmonics:

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}},$$

 $v_n\{6\} = \sqrt[6]{rac{1}{4}c_n\{6\}},$
 $v_n\{8\} = \sqrt[8]{-rac{1}{33}c_n\{8\}}$

Milan Stojanovic

$$v_2\{2\} = \sqrt{(ar{v}_2)^2 + \sigma_x^2 + \sigma_y^2},$$

Phys. Rev. C 95 (2017) 014913

$$v_x \equiv \frac{1}{2\pi} \int_0^{2\pi} P(\varphi) \cos 2\varphi \, d\varphi,$$

 $v_y \equiv \frac{1}{2\pi} \int_0^{2\pi} P(\varphi) \sin 2\varphi \, d\varphi.$

$$s_1\equiv \langle (v_x-ar v_2)^3
angle,\ s_2\equiv \langle (v_x-ar v_2)v_y^2
angle.$$

$$v_2\{2\} = \sqrt{(ar v_2)^2 + \sigma_x^2 + \sigma_y^2},$$

$$\begin{aligned} v_2\{4\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{s_1 + s_2}{(\bar{v}_2)^2}, \\ v_2\{6\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{\frac{2}{3}s_1 + s_2}{(\bar{v}_2)^2}, \\ v_2\{8\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{\frac{7}{11}s_1 + s_2}{(\bar{v}_2)^2}, \end{aligned}$$

Phys. Rev. C 95 (2017) 014913

$$v_x \equiv \frac{1}{2\pi} \int_0^{2\pi} P(\varphi) \cos 2\varphi \, d\varphi,$$

 $v_y \equiv \frac{1}{2\pi} \int_0^{2\pi} P(\varphi) \sin 2\varphi \, d\varphi.$

$$s_1\equiv \langle (v_x-ar v_2)^3
angle,\ s_2\equiv \langle (v_x-ar v_2)v_y^2
angle.$$

$$v_2\{2\} = \sqrt{(ar v_2)^2 + \sigma_x^2 + \sigma_y^2},$$

$$\begin{split} v_2\{4\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{s_1 + s_2}{(\bar{v}_2)^2}, \\ v_2\{6\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{\frac{2}{3}s_1 + s_2}{(\bar{v}_2)^2}, \\ v_2\{8\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{\frac{7}{11}s_1 + s_2}{(\bar{v}_2)^2}, \end{split}$$

$$v_2{6} - v_2{8} = \frac{1}{11}(v_2{4} - v_2{6}).$$

Phys. Rev. C 95 (2017) 014913

Milan Stojanovic

$$v_x \equiv rac{1}{2\pi} \int_0^{2\pi} P(\varphi) \cos 2\varphi \, d\varphi,$$

 $v_y \equiv rac{1}{2\pi} \int_0^{2\pi} P(\varphi) \sin 2\varphi \, d\varphi.$

$$s_1\equiv \langle (v_x-ar v_2)^3
angle,\ s_2\equiv \langle (v_x-ar v_2)v_y^2
angle.$$

$$v_2\{2\} = \sqrt{(ar{v}_2)^2 + \sigma_x^2 + \sigma_y^2},$$

$$\begin{split} v_2\{4\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{s_1 + s_2}{(\bar{v}_2)^2}, \\ v_2\{6\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{\frac{2}{3}s_1 + s_2}{(\bar{v}_2)^2}, \\ v_2\{8\} &\simeq \bar{v}_2 + \frac{\sigma_y^2 - \sigma_x^2}{2\bar{v}_2} - \frac{\frac{7}{11}s_1 + s_2}{(\bar{v}_2)^2}, \end{split}$$

$$v_2{6} - v_2{8} = \frac{1}{11}(v_2{4} - v_2{6}).$$

$$\gamma_1^{\text{expt}} \equiv -6\sqrt{2} v_2 \{4\}^2 \frac{v_2\{4\} - v_2\{6\}}{(v_2\{2\}^2 - v_2\{4\}^2)^{3/2}}$$

Phys. Rev. C 95 (2017) 014913

Milan Stojanovic

HYDJET++ & AMPT models

HYDJET++

- > Event-by-event generator;
- Based on PYTHIA and PYQUEN initial parton-parton collisions;
- Ideal hydrodynamic evolution of the system;

Comput. Phys. Commun. 180 (2009) 779-799

HYDJET++ & AMPT models

HYDJET++

- > Event-by-event generator;
- Based on PYTHIA and PYQUEN initial parton-parton collisions;
- Ideal hydrodynamic evolution of the system;

Comput. Phys. Commun. 180 (2009) 779-799

AMPT

- ≻Event-by-event generator;
- Based on HIJING initial parton-parton collisions;
- ➤Zhang's parton cascade;

Phys. Rev. C **72** (2005) 064901

$$\succ v_2{2} > v_2{4} \approx v_2{6} \approx v_2{8}$$

Data: F

Phys. Lett. **B** 789 (2019) 643

Good agreement in absolute difference

HYDJET underestimates the skewness of the data

Results – flow harmonic correlations

- Both models give similar v₂ predictions in central and mid-central events;
- Similar case for v₃ with better agreement with data, except in peripheral collisions
- AMPT v₄ very close to data, unlike HYDJET

Results – flow harmonic correlations

Good agreement between data and models in V₃ vs V₃ slope in central and mid-collisions Each source shows different behavior in peripheral events

Results – flow harmonic correlations

Good agreement between AMPT and data

HYDJET slope disagrees with data

Data:

- $\sim v_2\{m\}/v_2\{n\}$ ratio sensitive to the medium properties
- Skewness predictions from HYDJET++ below data results
- > AMPT very good in describing higher harmonics (V_4)