

Artificial graphene and artificial topological insulator.

Oleg P. Sushkov
UNSW, School of Physics

The aim of the project is to build an artificial topological insulator (TI) out of laterally patterned 2-dimensional electron gas in a semiconductor.

We want to use the power of modern nanotechnology to create a fully controllable and tunable TI.

- No interaction between electrons.
- I will discuss only single particle effects.
- The nontrivial physics is related to the band structure, i. e. to the interaction with external potential.

Basics

- 1) Band insulators,
- 2) Band metals,
- 3) Semiconductors,
- 4) Semimetals,
- 5) Gapped superconductors,
- 6) Gapless superconductors.

$$\frac{p^2}{2m}$$
 \rightarrow band structure ε_p

Band insulator

Physical vacuum is a *band insulator* with gap

$$\Delta = 2mc^2 \approx 1MeV = 10^6 eV$$

In a good solid state a **band insulator**

$$\Delta \approx 4 \, eV$$

Semiconductor is a **band insulator** with gap

$$\Delta \leq 1 \, eV$$

Metal

Has a nonzero dc conductivity $j=\sigma E$

Has a Fermi surface (FS).

Area of Fermi surface \neq 0.

Semimetal

Area of Fermi surface = 0.

Spectrum of a **gapped** superconductor is similar to that of an insulator.

$$\varepsilon_p = \pm \sqrt{v^2 (p - p_F)^2 + \Delta^2}$$

Spectrum of a gapless superconductor depends on direction in momentum space.

$$\varepsilon_p = \pm \sqrt{v^2 (p - p_F)^2 + \Delta_p^2}$$

For some direction in momentum space $\Delta_p=0$

Supercurrent flows without resistance.

Edge states and Quantum Hall effect

Mechanism of resistivity in normal metal.

Electrons scatter from impurities/defects/excitations.

Is it possible to have zero dissipation without superconducting pairing?

Quantum Hall effect (1980)

No room for electron backscattering in the edge state.

Spin orbit interaction

blue: unit vector perpendicular to the edge red: momentum of the edge electron

$$H_{ls} = \lambda(\mathbf{s} \cdot [\mathbf{p} \times \mathbf{n}]) = \lambda s_z p_x$$

Mechanism of spin orbit interaction in atomic nuclei.

In condensed matter the interaction is usually called **Rashba interaction**.

Is it possible to make H=H_{Is} for 1D edge state?

In this case the back scattering is forbidden if there are no magnetic impurities.

This implies a **dissipationless** edge state.

Graphene

Graphene is an atomic-scale honeycomb lattice carbon atoms monolayer. Conduction via π -orbitals of carbon. Tight binding.

Graphene is a 2D material

Two triangular sublattices, A and B.

Brillouin zone of a triangular lattice.

Dispersion

Two Dirac cones of different parity.

$$H = v_F$$
 bp

$$\mathbf{k} = \mathbf{K_1} + \mathbf{p}$$

 σ is pseudospin ½ related to two sublattices A and B.

Spin orbit interaction is zero, therefore usual spin s does not appear in the Hamiltonian.

Topological insulator

Kane & Mele, 2005, graphene with spin orbit interaction, brute force numerical diagonalization.

$$H = graphene + H_{ls}$$

Dirac cone of "dissipationless" edge states.

A realization of the Rashba Hamiltonian

$$H_{ls} = \lambda(\mathbf{s} \cdot [\mathbf{p} \times \mathbf{n}]) = \lambda s_z p_x$$

Artificial Graphene

Consider a 2D electron gas in a potential U(r) with hexagonal (triangular) symmetry and spacing L.

$$H = \frac{p^2}{2m} + U(r)$$

Brillouin zone

Artificial graphene vs artificial "antigraphene"

Consider a simple periodic potential

$$U(r) = 2W[\cos(G_1 \cdot r) + \cos(G_2 \cdot r) + \cos(G_3 \cdot r)]$$

- W < 0 describes an array of quantum dots and this is equivalent to **graphene**. This regime emulates chemistry.
- W > 0 describes an array of quantum antidots and this is equivalent to "antigraphene".

 The "antigraphene" is more interesting and more feasible.

 This regime cannot be realized in a natural chemical compound.

Artificial "antigraphene"

$$H = \frac{p^2}{2m} + U(r), \quad U(r) = 2W \left[\cos(G_1 \cdot r) + \cos(G_2 \cdot r) + \cos(G_3 \cdot r)\right]$$

Numerical diagonalization of the Hamiltonian is straightforward.

Two major advantages of the artificial "antigraphene" compared to artificial graphene:

Electron density map

- (i) Second pair of Dirac points.
- (ii) Larger energy scale.

Dispersion

Topological insulator

Let us switch on the spin orbit interaction \mathbf{H}_{so} . Whatever is the microscopic mechanism of the interaction the matrix element between two plane waves must be of the following form

$$<\mathbf{p}_{2} \mid H_{so} \mid \mathbf{p}_{1} > \propto i([\mathbf{p}_{1} \times \mathbf{p}_{2}] \cdot \mathbf{s})$$

An additional condition follows from the **Bloch's theorem**. Since the spin-orbit interaction has the period of the potential, the matrix element is nonzero only if

$$\mathbf{p}_2 - \mathbf{p}_1 = \pm \mathbf{G}_i$$

The interaction is small for electrons in GaAs, but for holes it is comparable with kinetic energy. Therefore we need hole doped GaAs.

Spin orbit opens a gap in the 2D bulk Dirac cone.

The 2D "sample" is restricted by electrostatic gates.

The gating results in the edge states and in the edge 1D "Dirac" cone.

Sz=+1/2 is the right mover and Sz=-1/2 is the left mover.

These states are responsible for edge current without dissipation.

Points to note

- 1. Modern nanotechnology allows to create a **tunable topological insulator** using laterally patterned semiconductor heterostructure.
- 2. The ultimate **goal is a creation of dissipationless electronics** without superconductivity.
- 3. Artificial "antigraphene" is better than artificial graphene, 2nd pair of Dirac points.
- 4. The artificial topological insulator cannot be built with electron doped semiconductors, but it can be built with hole doped.

Thank you