The ATLAS Electron and Photon Trigger Performance in Run-2

Daniela Köck on behalf of the ATLAS collaboration

8th International Conference on New Frontiers in Physics (ICNFP 2019)

Introduction The ATLAS trigger system in a nutshell, Ringer algorithm offline electron and photon reconstruction

electron and photon trigger efficiency measurements Z tag-and-probe method, Z radiative decay method, Bootstrap method

Performance of electron and photon triggers during Run-2

Level-1 performance, electron and photon trigger evolution, trigger in heavy ion collisions

Conclusions and Outlook

The ATLAS trigger system in a nutshell

Ringer algorithm

- used from 2017 on to trigger electrons (Fast Calorimeter step) with $E_T > 15$ GeV
- use lateral shower development
- concentric ring energy sums in each calorimeter layer
- transverse energy in each ring normalised to total transverse energy in the Rol
- ring energies fed into multilayer perceptron (MLP) neutral networks

Ringer increases Fast Calorimeter step reconstruction time, but reduces input candidates to the tracking -> significantly reduced CPU demand (50% CPU reduction for the lowest p_T unprescaled single electron trigger)

The ATLAS Electron and Photon Trigger Performance in Run 2

'Offline' electron and photon reconstruction and identification

Electrons

- Identification based on a likelihood discriminator
- 'loose', 'medium', 'tight' working points considered
- using GSF (Gaussian-Sum Filter) as a generalisation of the Kalman fitter, better account for energy loss in Inner Detector

using Supercluster to improve electron and photon energy reconstruction in cases with Bremsstrahlung or pair production

Photons

- identification based on calorimetric variables
- two identification working points, 'loose' and 'tight'
- 'loose' relying on shower shapes in the second electromagnetic calorimeter layer and hadronic deposits
- 'tight' including first layer of electromagnetic calorimeter

Performance measurement techniques - electrons

Z tag-and-probe method

$$\epsilon_{\text{total}} = \epsilon_{\text{offline}} \times \epsilon_{\text{trig}} = \left(\frac{N_{\text{offline}}}{N_{\text{all}}}\right) \times \left(\frac{N_{\text{trig}}}{N_{\text{offline}}}\right)$$

compute trigger efficiency with respect to offline electron definitions

systematic uncertainties

- given by varying tag definition, Z-mass window and background subtraction method
- central value is average of variations

Performance measurement techniques - photons

Z radiative decay method

Performance measurement techniques - photons

Bootstrap method

High Level Trigger efficiency on bootstrap sample

based on Level-1 - only triggers or loose and low E_T photon triggers

Bootstrap sample efficiency with respect to offline selection

computed on events selected by special 'random' trigger

• large, uncontrolled background contamination (main source of uncertainty)

• systematic uncertainty as difference between data and simulated H $\rightarrow \gamma\gamma$ events

Level-1 trigger performance

- linear increase of rate with
 - instantaneous luminosity
- single Level-1 EM triggers: raise of threshold by 2 GeV

- leads to 25% decrease in rate
- rate reduction of ~44% per leg by including electromagnetic calorimeter isolation at Level-1, efficiency decrease up to 5%

Photon trigger evolution and performance

	2015	2016	2017	2018
Single photon	g120_loose	g140_loose		
primary diphoton	g35_loose_g25_loose		g35_medium_g25_mediur	
tight diphoton	2g20_tight	2g22_tight	2g20_tight	_icalovloose

reoptimisation of 'tight' photon selection at the end of 2017

m

- → BSM physics, high E_T photons
- → Higgs to diphoton
- → low mass diphoton searches

Photon trigger evolution and performance

- bootstrap method used to calculate the efficiency
- total uncertainties dominated by systematics, in total O(1%)
- efficiency in 2016 rises faster due to lower pile-up conditions

The ATLAS Electron and Photon Trigger Performance in Run 2

Photon trigger evolution and performance

- efficiency measured with radiative Z decay method
- lower efficiency in 2017-2018 due to medium instead of **loose** online ID
- no pseudorapidity or pile-up dependency in efficiency

The ATLAS Electron and Photon Trigger Performance in Run 2

2.5 [2]

Electron trigger evolution and performance

	2015	2016	2017-2018
Single electron	e24_lhmedium (EM20VH) e120_lhloose e200_etcut	e26_lhtight_ e60_lhmediu e140_lhloose e300_etcut	nod0_ivarloose (EM22VHI) Im_nod0 e_nod0
dielectron	2e12_lhloose (2EM10VH)	2el7_lhvloose_nod0 (2EM15VH)	2e17_lhvloose_nod0 (2EM15VHI) 2e24_lhvloose_nod0 (2EM20VH)
	$\begin{array}{c} \begin{array}{c} 1\\ \end{array} \\ \begin{array}{c} 220\\ \end{array} \\ \begin{array}{c} 200\\ \end{array} \\ \begin{array}{c} 200\\ \end{array} \\ \begin{array}{c} 200\\ \end{array} \\ \begin{array}{c} ATLAS \ Preliminary \\ pp \ data \ 2015-2018 \\ 160\\ \end{array} \\ \begin{array}{c} \sqrt{s} = 13 \ TeV \\ 140\\ 120\\ \end{array} \\ \begin{array}{c} 100\\ \end{array} \\ \begin{array}{c} 00\\ \end{array} \\ \end{array} \\ \begin{array}{c} 00\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 00\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 00\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}	Lowest unprescaled single electron trigger 2015 2016 2016 2017 2018 12 14 16 18 20 [2] us Luminosity [cm ⁻² s ⁻¹] × 10 ³³	

The ATLAS Electron and Photon Trigger Performance in Run 2

Performance of the Ringer algorithm

evaluation of Ringer performance in 2017

Comparing Ringer and cutbased selection at fast reconstruction

nearly unchanged efficiency behaviour in single electron case

50% CPU reduction for the lowest p_T unprescaled single electron trigger

|4

Performance evolution of single electron trigger

sharper turn on in 2015

lower E_T threshold, no isolation, looser identification

inefficiencies in 2016 below 60 GeV observed

due to LH calorimeter only selection in precision calorimeter step

pile-up dependency reduced towards end of Run-2

residual dependency due to isolation requirements

2017 data driven likelihood selection, introduction of Ringer algorithm

The ATLAS Electron and Photon Trigger Performance in Run 2

15

photon trigger in heavy ion data taking

photons

- photon trigger efficiency evaluated with respect to offline-reconstructed photons
- efficiency shown with and without subtraction of the underlying event

Conclusion and Outlook

Good understanding of the electron and photon trigger performance during Run-2

established methods to measure trigger efficiencies, several improvements during Run-2 to adapt to changing conditions

Many ongoing efforts to improve the electron and photon trigger performance and CPU usage in Run-3

Aim to get closer to offline selections than in Run-2

moving towards multi-threading on trigger level

update of Level-1 Calo electronics with improved granularity, will lead to improved background rejection and better efficiencies

17

The ATLAS Electron and Photon Trigger Performance in Run 2

References

[1] 'Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach' The ATLAS Collaboration, ATL-PHYS-PUB-2017-022 [2] CERN-EP-2019-169 [3] 'Performance of Ringer in Trigger egamma for WCCl2018' https://twiki.cern.ch/twiki/pub/AtlasPublic/EgammaTriggerPublicResults/HLT_e28_lhtight_nod0_ivarloose_LIEM24VHIM_et.png [4] 'Performance of photon triggers for Pb+Pb collisions at 5.02 TeV' https://twiki.cern.ch/twiki/pub/AtlasPublic/EgammaTriggerPublicResults/PhotonTriggerPerformance_vsFCal_Prelim.png

BACKUP

electron reconstruction

Datasets and simulated samples

p-p collision data

2015 - 3.2 fb⁻¹ 2016 - 32.9 fb⁻¹ 2017 - 43.9 fb⁻¹ 2018 - 58.5 fb⁻¹

Pb - Pb collision data

one month in 2015 and 2018 centre of mass energy per nucleon pair 5.02 TeV

Pb - p collisions

at 5.02 TeV and 8.16 TeV per nucleon pair in 2016

Heavy lon reference data

from 5.02 TeV p-p collisions in low pileup conditions

process	generators	
Z → ee	POWHEG-BOX v2	
	PYTHIA v8.186 POWHEG-BOX v2	
$\vee \vee \rightarrow e \vee$	PYTHIA v8.186	
J/ <i>ψ</i> → ee	PYTHIA v8.186	
$qg ightarrow q\gamma$ $q\bar{q} ightarrow q\gamma$ W/Z production	PYTHIA v8.186	
$Z \rightarrow \ell \ell \gamma$	POWHEG-BOX PHOTOS PYTHIA v8.186	
qg → qγ qq → gγ QCD dijet	PYTHIA v8.186	
$\vdash \rightarrow \gamma \gamma$	PYTHIA v8.186	
radion decay	MADGRAPH5-2.6.0 PYTHIA v8.212	

Z tag and probe measurements

Z tag and probe method

tag electron

matched to lowest unprescaled single electron triggers

tight ID, $E_T > 27$ GeV

$|\mathbf{\eta}| < 2.47$, outside the transition region

probe electron

15 GeV around Z-mass peak

opposite sign to tag electron

systematic uncertainties

- given by varying tag definition, Z-mass window and background subtraction method
- central value is average of variations
- systematic on central value is standard deviation of all variations
- statistical error on central value is average over statistical uncertainty of variations

trigger inefficiencies

inefficiency sources for 2017 single electron chain mainly electron identification for tight and isolated trigger

The ATLAS Electron and Photon Trigger Performance in Run 2

Trigger reconstruction and identification of photons and electrons

Level I	2x2 trigger tower cluster as RoI in EM calorimete V: varying E⊤ threshold within -2 and +3 GeV of nominal H: veto on hadronic leakage I: E⊤ dependent Ecal isolation of cluster
<u>e/γ</u> <u>trigger</u>	 precision reconstruction with sliding window algorithm no usage of superclusters use of average number of interactions per crossing instead of number of primary vertices
Photon trigger	 fast algorithm uses only 2nd layer of EM calo, selection on cluster E_T and shower shape parameters online ID use same cluster shower shapes as the offline IE (without fudging), three working points: 'loose', 'medium' (only used online), 'e calorimeter only isolation possible no tracking information
Electron trigger	 fast calorimeter reconstruction cut-based and neural-network ringer algorithm precision selection relying on likelihood discriminant, four points: <i>lhvloose, lhloose, lhmedium, lhtight</i> additional isolation requirement possible <i>(ivarloose)</i> differences w.r.t. offline: trigger reconstruction with poorer resolution than or no momentum loss due to bremsstrahlung taken inter

24

Hadronic Calorimeter

The ATLAS Electron and Photon Trigger Performance in Run 2

