



# Search for exotic decays with NA62

#### **Marco Mirra**

Sezione INFN Napoli on behalf of NA62 collaboration



8<sup>th</sup> International Conference on New Frontiers in Physics 26 August 2019, Creta

## The NA62 experiment at CERN

Kaon physics with fixed target experiments at CERN SPS. Currently in NA62: ~200

participants, 29 institutions from 13 countries





NA62 Main Goal: 10% precision BR( $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ ) measurement LNV-LFV in  $K^+$  decays

S. Ghinescu talk

Hidden sector particles from kaon decays and with a change in the beam-line setup (beam-dump mode)

This talk

2014 Pilot Run 2015

Commissioning

2016

Commissioning + Physics Run

2017

Physics Run

2018

**Physics Run** 

2019-2020

LS2 Long

shutdown 2





- $\succ$  Kinematic reconstruction:  $M_{miss}^2 = (P_K P_\pi)^2$ ,  $\sigma_{M_{miss}^2} = 10^{-3} \text{GeV}^2/\text{c}^4$  at  $K^+ \to \pi^+ \pi^0$
- > Time resolution to match beam and daughter particle information: ~100ps



> Photon vetoes to suppress bkg with  $\pi^0$  in the final state for the main analysis:  $10^8$  rejection of  $\pi^0$  for  $E(\pi^0) > 40$  GeV



> PID detectors to suppress bkg with  $\mu^+$  or  $e^+$  in the final state for the main analysis:  $\mu$  vs  $\pi$  rejection of O(10<sup>7</sup>) for 15 < p( $\pi^+$ ) < 35 GeV



#### **Performances**

- $\checkmark$  Excellent time resolution  $\mathcal{O}(100 \text{ ps})$  to match beam and daughter particle information
- ✓ Kinematics: rejection of main K modes  $10^4$  via kinematics reconstruction
- ✓ PID capability:  $\mu$  vs  $\pi$  rejection of O(10<sup>7</sup>) for 15 < p( $\pi$ <sup>+</sup>) < 35 GeV
- ✓ High-efficiency veto:  $10^8$  rejection of  $\pi^0$  for  $E(\pi^0) > 40$  GeV

The beam and detector of the NA62 experiment at CERN, 2017 JINST 12 P0502

#### **Hidden sector motivations**

➤ With LHC a large new territory has been explored and no unambiguous signal of New Physics has been found at TeV scale.

➤ From Cosmological and Astrophysical observations something else than ordinary Baryonic matter should exist. The abundance of this new entity is 5 times larger than SM particles.

could be explained by NP, below the

 $\succ$  An attractive possibility: the unresolved problems could be explained by NP, below the EW scale, feebly interacting with SM  $\rightarrow$  intensity frontier experiment



Interaction between DM and SM mediated by new Gauge-invariant operators. Many possible dynamics: neutrino (HNL), vector (Dark Photon), axial (ALP), scalar (S), ...

26.8% Dark

9% Ordinary

#### Dark photon

 $\triangleright$  Hidden sector model with one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or A' boson [B. Holdom Phys.Lett. B166 (1986) 196]: kinetic mixing between the QED and the new U(1) gauge bosons

$$\mathcal{L}_{mix} = -\frac{\varepsilon}{2} F_{\mu\nu}^{QED} F_{dark}^{\mu\nu}$$

 $\triangleright$  A consequence of this interaction is the transition  $\pi^0 \to \gamma A'$  [Batell, Pospelov and Ritz,

PRD 80. 095024 (2009)1: γ Α'
π<sup>0</sup>

$$\frac{BR(\pi^0 \to \gamma A')}{BR(\pi^0 \to \gamma \gamma)} = 2\varepsilon^2 \left(1 - \frac{M_{A'}^2}{M_{\pi^0}^2}\right)^3$$

 $\triangleright$  Search for invisible decay of massive A' or long lived massive A'

 $K^+ 
ightarrow \pi^+ \pi^0$  ,  $\pi^0 
ightarrow \gamma A'$ 

Measure  $K^+$ ,  $\pi^+$  momentum and detect one  $\gamma$  in LKr, veto other particles  $\rightarrow$ missing energy signature



## Dark photon search strategy

- A peak search in  $M_{miss}^2$  distribution performed. A sliding  $M_{miss}^2$  window  $(\pm 1\sigma_{M_{miss}^2})$  is used to count signals for different A' mass hypothesis.
- > Background due to  $π^0$  → γγ with one γ not detected.



 $\triangleright$  Data-driven approach to evaluate background: same selection of the signal-sample but one cut inverted to ensures  $\pi^0 \to \gamma \gamma$  events with one  $\gamma$  lost because of conversion.





## NA62 result for dark photon search



- ➤ CLs technique using 1% of the statistics collected by NA62 in 2016–2018.
- ➤ No statistically significant excess is detected: observed upper limits @ 90% CL compatible with fluctuations from the background-only hypothesis.
- > Also set world's best upper limit on  $BR(\pi^0 \to \gamma \nu \overline{\nu}) < 1.9 \times 10^{-7} \text{ at } 90\% \text{ CL}$



NA62: JHEP 05 (2019) 182, 2016 data



NA64: arXiv:1906.00176, 2016-2018 data

## Heavy neutral lepton

- ▶ Dark Matter + Baryon Asymmetry of the Universe (BAU) + v-oscillations can be explained by the addition of 3 massive sterile neutrinos N<sub>i</sub> to the SM: Asaka-Shaposhnikov model (vMSM) [PLB 620 (2005) 17]
- ightharpoonup Lightest of N<sub>i</sub> mass O(10 keV/c<sup>2</sup>) is candidate for DM; the others, of mass ~ 100 MeV/c<sup>2</sup> to few GeV/c<sup>2</sup>, introduce extra CPV-phases to account for Baryon Asymmetry
- > Standard neutrino masses produced through see-saw mechanism
- $\triangleright$  Production and decay modes same as SM ones, scaled by coupling factor  $|U_{l4}|^2$  and kinematic factor  $\rho_l(m_N)$





$$BR(K^+ \to l^+ N)$$

$$= BR(K^+ \to l^+ \nu_l) \rho_l(m_N) |U_{l4}|^2$$

## Heavy neutral lepton search at NA62

- ➤ Long lived N<sub>i</sub> escapes the detector: single positively-charged downstream track topology
- > Search for excess in the missing mass spectrum  $M_{\text{miss}}^2 = (P_K P_l)^2$  expected to peak at  $M_N^2$  for signal events. A sliding mass window is used with bkg evaluated from sidebands.
- > Data sample 5 days @ 1% nominal intensity with minimum-bias trigger:
  - $N_K = 3 \times 10^8 \text{ for } K^+ \to e^+ N$
  - $N_K = 1 \times 10^8 \text{ for } K^+ \rightarrow \mu^+ N$

#### e/μ ID through E/p, Muon Veto and RICH (for p<40 GeV/c)





## NA62 result for heavy neutral lepton search

- > No statistically significant excess observed
- ➤ Rolke-Lopez method to set 90% CL limits on the observed signals and  $|U_{I4}|^2$
- ➤ Improved limits on  $|U_{e4}|^2$  in 170 448 MeV/c<sup>2</sup>. Improved limits on  $|U_{u4}|^2$  above 300 MeV/c<sup>2</sup>
- ➤ O(10) improvement foreseen with full set of NA62 data (2016-2018)



Phys. Lett. B778 (2018) 137, NA62 2015 data

## NA62 data taking configuration



## NA62 data taking configuration



#### **NA62++ in Run3**

- ➤ Already O(10¹6) POT in dump mode were collected by NA62 in 2016-2018 and analysed for background studies
- ➤ NA62++ proposes to operate the detector in beam dump mode for few months during Run 3 in 2021-2023:
  - O(10<sup>18</sup>) POT can be collected in about 3 months of data taking
  - the muon halo emerging from the dump is partially swept away by the existing muon clearing system, but an upstream veto is under study for further reduction



- ➤ The physics potential of NA62++ has been studied as part of the Physics Beyond Colliders Beyond the Standard Model working group
- ➤ Following slides show NA62++ expected sensitivity assuming O(10<sup>18</sup>) POT
- > The limits are set at 90% CL and are compared to other results expected on a 5-year scale



arXiv:1901.09966

## NA62 sensitivity to dark photon

- > A' produced (meson decays, bremsstrahlung) from interaction into target
- $\triangleright$  Search for displaced, dilepton decays of dark photons,  $A' \rightarrow \mu\mu$ , ee
- ➤ Include trigger/acceptance/selection efficiency
- > Assume zero-background, evaluate expected 90%-CL exclusion plot

Sensitivity expected to be even higher including direct QCD production of A' and production in the Cu-based dump (only Betarget considered here)



## NA62 sensitivity to HNL

- ► HNL produced in the decay chain:  $D(Ds) \rightarrow l^+ N$ ,  $N \rightarrow \pi l$
- ➤ Account for trigger/acceptance/selection efficiency
- > Assume zero-background
- ➤ Analysis of 3×10<sup>16</sup> POT collected in dump mode in 2016-2018 in progress







## NA62 sensitivity to ALP

- ➤ Good candidate for cold dark matter, produced via elastic scattering of beam proton dumped onto NA62 Cu collimators (Primakoff effect)
- $\triangleright$  Decay searches can be performed for ALP $\rightarrow \gamma \gamma$  in MeV/c<sup>2</sup>-GeV/c<sup>2</sup> mass range
- $\triangleright$  Ongoing analysis of 2017-2018 data taken in beam-dump mode (closed beam collimators) with 2×10<sup>16</sup> POT.

Expected sensitivity in zero-background hypothesis, account for geometrical acceptance. Improvements expected already with 1 day of run

 $(1.3 \times 10^{16} \text{ POT})$ 



## NA62 sensitivity to scalar

 $\triangleright$  Dark Scalar S: light scalar mixing with Higgs with angle  $\theta$ , mediator between DM and SM particles. In the simplest scenario only one parameter controls production and decay processes.

Dump mode:  $S \rightarrow \mu^{+}\mu^{-}$ but also accessible in NA62 kaon mode:

$$K^+ \rightarrow \pi^+ S, S \rightarrow \text{inv}$$
  
 $K^+ \rightarrow \pi^+ S, S \rightarrow \mu^+ \mu^-$ 



#### **Conclusions**

- ✓ NA62 took data with the complete detector in 2016-2018. Owing to the high beam energy and high beam intensity, the long decay volume and the hermetic detector coverage, NA62 has the opportunity to directly search for a plethora of exotic decays
- ✓ Recently published results have been presented on HNL and Dark Photon searches with partial data sample
  - best limits set on  $K^+ \rightarrow l^+ N$
  - limits on  $\pi^0 \to \gamma A'$
- ✓ In Run3,  $\pi$ vv program completion, then partially running in beam-dump mode: limit improvements for HNL, Dark Photon, Dark Scalar and ALPs have been shown
- **✓** Exploiting the available NA62 data:
  - preliminary studies indicate sufficient background rejection power