TESTING DARK MATTER MODELS AND QUANTUM FOUNDATIONS WITH THE SABRE EXPERIMENT

F. Nuti* for the SABRE collaboration *The University of Melbourne ICNFP 2019, Crete 26/08/2019

DIRECT DETECTION OF DARK MATTER

dR [cpd/kg/keV

3

- WIMP-like dark matter (DM) expected to occasionally interact with nuclei
- Rate depends on the relative velocity DM-nucleus \rightarrow Annual modulation due to Earth change of speed during the year $S_m/S_0=O(10^{-2})$

• For DM masses $m_D > GeV$ recoil energies 1-100 keV

THE CSL MODELS

- In quantum mechanics, the collapse of the wave function to a single state is unexplained (measurement problem)
- The transition Quantum-to-Classical worlds is also unclear
- The Continuous Spontaneous Localization (CSL) models address these questions introducing interactions with a stochastic nonlinear noise field in the Schrödinger Equation

$$i\hbar \frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = \hat{H}|\psi(t)\rangle \longrightarrow i\hbar \frac{\mathrm{d}|\psi_t\rangle}{\mathrm{d}t} = \left[\hat{H} - \frac{\hbar\sqrt{\lambda}}{m_0}\int \mathrm{d}\mathbf{x}\,\hat{M}(\mathbf{x})w_t(\mathbf{x})\right]|\psi_t\rangle$$

• Fundamental parameters of the theory: the collapse rate λ , the correlation length of the noise r_{c} Adler, Bassi, 2007

SEARCH FOR SPONTANEOUS X-RAY EMISSION

 The CSL models have several implications that can be tested by different types of experiments

• CSL predicts spontaneous x-ray emission from charged particles that can be detected by DM direct detection experiments

5

Goals:

- Direct detection of DM in ultra-pure sodium-iodide (NaI) detectors in North and South hemispheres
- Model-independent verification/exclusion of DAMA/LIBRA annual modulation (see V. Caracciolo talk)

SABRE KEY FEATURES

MELBOURNI

Ultra-Pure Crystals

- The crystal radiopurity is the most critical aspect for Nal detectors
- SABRE uses
 - High purity Astro-grade powder produced by Merck (former Sigma-Aldrich)
 - Clean crystal growth method developed by Princeton and RMD
- Two octagonal 3.5 kg crystals have been grown

Element	Nal Powder	Crystal	DAMA Crystal
^{nat} K	3.5 - 18 ppb	4.3 ± 0.9 ppb	13 ppb
²³⁸ U	< 1 ppt	< 1 ppt	0.7 – 7.5 ppt
²³² Th	< 1 ppt	< 1 ppt	1 ppt
⁸⁷ Rb	0.2 ppb	< 0.1 ppb	< 0.35 ppb

LOW ENERGY THRESHOLD

- SABRE aims to be sensitive to the energies covered by DAMA/LIBRA 1-6 KeVee and below
- Ourrent Design:
 - 2 x Hamamatsu R11065-20 3" PMTs per crystal with High QE: > 35% and minimal contaminations
 - Direct PMT-Crystal coupling for maximal light yield
 - \bullet Custom pre-amplifiers and super bialkali photocathodes \rightarrow less afterglow and dark noise

MELBOURN

ACTIVE BACKGROUND REJECTION

- Crystals surrounded by a liquid scintillator detector to reject external and intrinsic backgrounds
- Veto processes with energy > 100 keVee
- Very effective in rejecting ⁴⁰K crystal events

PoP

DOUBLE LOCATION

Twin experiments in opposite hemispheres allow to:

- •rule out potential seasonal modulations and local effects
- reduce biases thanks to independent systems

STAWELL UNDEGROUND PHYSICS LABORATORY

- Clean laboratory at the Stawell Gold Mine 1025 m underground
- Project fully funded with A\$10 millions
- Onstruction to start in September 2019
- SABRE @ SUPL around the end of 2020 10 m

Clean-room, low radon areas

CLEANING ANTE ROC

Proof of Principle

- At LNGS, SABRE Proof of Principle (PoP) phase is ready for commissioning:
- Single 3.5 kg crystal
- Active veto with 2 ton PC+PPO (3g/l) scintillator and 10 Hamamatsu R5912-100 PMTs
- Hybrid passive shielding:
 - Bottom: 15 cm Pb + 10 cm PE
 - Sides: 40 cm PE + 90 cm water
 - Top: 10 cm PE + 2cm Stainless Steel +80cm water

Goals:

- Characterize crystal contaminations, particularly ⁴⁰K, ³H, ²¹⁰Pb
- Test active veto performance

Francesco

SABRE SIMULATION

- GEANT4 simulation of the PoP detector and estimate of the expected background
- Considered radiogenic and cosmogenic contaminations in:
 - Nal(Tl) crystals
 - Crystal wrapping + PMTs
 - Crystal enclosure
 - Crystal insertion system (CIS)
 - Vessel, Liquid Scintillator, vessel PMTs (Veto)
- Activity values from preliminary measurements and literature (see backup)

Expected external background below 5E-03 cpd/keV/kg ^{25/8/19}

MELBOURN

13

⁴⁰K measurement mode (KMM)

Target ⁴°K electron capture (3 keV auger e⁻ + 1.46 MeV γ) in the crystal and other processes with large energy deposits in the scintillator

Selection: $E(Scintillator) \in [1280,1640] \text{ keVee}$ $E(Crystal) \in [2,4] \text{ keVee}$

	Rate KMM
	[cpd/kg/keV]
Crystal Cosmogenic*	$9.8\cdot10^{-3}$
Veto	$6.2\cdot10^{-3}$
Enclosure	$1.3\cdot 10^{-3}$
Crystal PMTs	$1.1\cdot 10^{-3}$
CIS	$7.7\cdot 10^{-4}$
Crystal (no 40 K)	$5.1\cdot 10^{-5}$
Total	$2.5 \cdot 10^{-2}$
Crystal ⁴⁰ K	$1.9 \cdot 10^{-1}$

* After 2 months underground

DARK MATTER MODE (DMM)

15

Test the active rejection power of the liquid scintillator system and the

expected background in the crystal

Selection: E(Scintillator) < 100 keVee $E(Crystal) \in [2,6] \text{ keVee}$

	Rate, veto OFF	Rate, veto ON
	[cpd/kg/keV]	[cpd/kg/keV]
Crystal	$3.5\cdot10^{-1}$	$1.5\cdot10^{-1}$
Crystal (^{3}H) *	$1.4\cdot10^{-1}$	$1.4\cdot10^{-1}$
Crystal Cosmogenic*	$2.4\cdot10^{-1}$	$3.1 \cdot 10^{-2}$
Crystal PMTs	$4.3\cdot10^{-2}$	$3.5\cdot10^{-2}$
Enclosure	$9.5\cdot 10^{-3}$	$3.6\cdot10^{-3}$
Veto	$3.0\cdot10^{-2}$	$5.7\cdot10^{-4}$
CIS	$3.7\cdot10^{-3}$	$4.6\cdot10^{-4}$
Total	$8.2\cdot10^{-1}$	$3.6\cdot10^{-1}$

* After 6 months underground

EXPECTED SENSITIVITY (DM)

If PoP data confirm the simulated background estimate → SABRE full scale can test DAMA/LIBRA at 5σ sensitivity in few years

- 90% CL limits for spinindependent WIMP nuclear scattering are obtained assuming:
- 50 kg of total crystal mass
- 3 years of exposure
- \odot 0.13 < Q_{Na} < 0.21 and Q_l=0.09

EXPECT SENSITIVITY (QM)

- Limits on the CSL parameters λ and r_c found assuming:
 - the background rate from simulation
 - an uncertainty on the overall background magnitude of 10%
 - 6 months of data taking with a single 3.5 kg crystal
- SABRE PoP sensitivity is comparable with that of the current leading experiment for spontaneous X-ray emission

• Could potentially set the strongest limit

Proposed theoretical values (Dots) and exclusion from: LISA Pathfinder, cold atoms, phonon excitations in crystals, X-ray emission (IGEX), nanomechanical cantilever, theory

CONCLUSION

SABRE can:

- achieve the lowest background among Nal(Tl) detectors
- perform a model-independent 5σ verification of the DAMA/LIBRA modulation
- exclude any local effects thanks to double location
- compete with the current x-ray emission detectors to set the strongest limits on the CSL models
- Proof of Principle phase is in commissioning
- SABRE @ SUPL is expected by the end of 2020

BACKGROUNDS

100

1000

10

Depth [meter water equivalent]

0.01

0.1

CRYSTAL BACKGROUND (DMM)

S	
	THE UNIVERSITY C
	MELBOURN

Isotope	Rate, veto OFF	Rate, veto ON
	[cpd/kg/keV]	[cpd/kg/keV]
	Intrinsic	
⁸⁷ Rb	$6.1 \cdot 10^{-2}$	$6.1 \cdot 10^{-2}$
40 K	$2.5 \cdot 10^{-1}$	$4.0 \cdot 10^{-2}$
^{238}U	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
²¹⁰ Pb	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
85 Kr	$1.9 \cdot 10^{-3}$	$1.9 \cdot 10^{-3}$
232 Th	$1.9 \cdot 10^{-3}$	$1.7\cdot10^{-3}$
Tot Intrinsic	$3.5 \cdot 10^{-1}$	$1.4 \cdot 10^{-1}$
	Cosmogenic	
^{3}H	$1.4 \cdot 10^{-1}$	$1.4 \cdot 10^{-1}$
¹²¹ Te	$2.0 \cdot 10^{-1}$	$2.6 \cdot 10^{-2}$
¹¹³ Sn	$1.2 \cdot 10^{-2}$	$2.2 \cdot 10^{-3}$
22 Na	$2.1 \cdot 10^{-2}$	$1.5 \cdot 10^{-3}$
¹²⁵ I	$4.4 \cdot 10^{-4}$	$4.4 \cdot 10^{-4}$
¹²⁹ I	$1.9 \cdot 10^{-4}$	$1.9 \cdot 10^{-4}$
¹²⁶ I	$1.8 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$
127m Te	$6.4 \cdot 10^{-5}$	$6.4 \cdot 10^{-5}$
121m Te	$7.1 \cdot 10^{-5}$	$3.7 \cdot 10^{-5}$
123m Te	$1.9 \cdot 10^{-5}$	$1.3\cdot10^{-5}$
125m Te	$3.8 \cdot 10^{-6}$	$3.7\cdot10^{-6}$
Tot Cosmogenic	$3.8 \cdot 10^{-1}$	$1.7 \cdot 10^{-1}$
(180 days)		

Cosmogenic activation:

Calculation with ACTIVIA and assumptions:

- 1 year of exposure at sea level
- + 10 hours flight from US (crystal production in Boston/Princeton) to Italy
- 6 months underground

External Background

• Simulation of U, Th and K in the LNGS rocks and propagate in SABRE geometry

	Hall B [ppm]	Hall C [ppm]
к	7068 ± 90	12780 ± 70
U	0.56 ± 0.01	0.966 ± 0.004
Th	0.54 ± 0.01	0.840 ± 0.006

In agreement with values in literature (H. Wulandari et al. Astroparticle Physics 22 (2004) 313–322)

	Rate in [2-6] keV [cpd/kg/keV]
Gamma Hall B	< 4.0 10 ⁻³ (99% CL)
Gamma Hall C	< 5.4 10⁻³ (99% CL)
Total internal	0.36

Gamma external background including shielding and veto effect is **O(100) lower** than internal backgrounds

 Preliminary study on radiogenic neutrons show that the contribution is ~10⁻⁴ cpd/kg/keV in the signal region Nuti

CONTAMINATIONS (1/2)

Isotope	Activity	Reference	
⁴⁰ K	10 ppb	SABRE	Ra
²³⁸ U	< 1 ppt	(<u>arXiv:1806.09344)</u>	dio
²³² Th	< 1 ppt		ger
⁸⁷ Rb	< 0.1 ppb		nic
²¹⁰ Pb	<0.03 mBq/kg	DAMA (<u>arXiv:0804.2738</u>)
⁸⁵ Kr	<0.01 mBq/kg		

Crystal PMTs (XENON1T <u>arXiv:1503.07698</u>)

Isotope	Activity [mBq/PMT]		
	Body	Window	Ceramic plate
⁴⁰ K	<5.9	< 0.48	6.5
⁶⁰ Co	0.65	< 0.042	< 0.19
²³⁸ U	< 0.52	<1.8	13
226 Ra	< 0.29	0.040	0.29
232 Th	< 0.0098	< 0.037	0.70
228 Th	< 0.41	< 0.015	0.13

Isotope	Activity [mBq/kg]	Reference
ЗН	0.018	Activia simulation
²² Na	0.48	software
126	4.1	
129	0.57	
¹¹³ Sn	0.096	
125	1.9	
¹²¹ Te	1.27	
¹²¹ mTe	0.50	
¹²³ mTe	0.31	
¹²⁵ mTe	0.69	
¹²⁷ mTe	0.50	

PTFE crystal wrapping (XENON100 <u>arXiv:1207.5988</u>)

Isotope	Activity [mBq/kg]
⁴⁰ K	3.1
$^{238}\mathrm{U}$	0.25
$^{232}\mathrm{Th}$	0.5

CONTAMINATIONS (2/2)

PTFE parts of enclosure (XENON100 <u>arXiv:1103.5831</u>)

Isotope	Activity [mBq/kg]
⁴⁰ K	$<\!\!2.25$
²³⁸ U	< 0.31
232 Th	< 0.16
⁶⁰ Co	< 0.11
^{137}Cs	< 0.13

Steel vessel (SABRE GDMS method)

Isotope	Activity/Concentration
40K	4 ppb
238U	$0.3 \mathrm{~ppb}$
$232\mathrm{Th}$	< 0.1 ppb

Veto PMTs (DarkSide-50 <u>arXiv:1512.07896</u>)

`	
Isotope	Activity[mBq/PMT]
40K	649
238U	883
$232 \mathrm{Th}$	110
$235\mathrm{U}$	41

Copper parts of enclosure (Cuore-0 arXiv:1609.01666)

Isotope	Half life [days]	Activity [mBq/kg]]
⁴⁰ K		0.7	
$^{238}\mathrm{U}$		0.065	
$^{232}\mathrm{Th}$		0.002	
60 Co	1925	0.340	
58 Co	71	0.798	5
$^{57}\mathrm{Co}$	272	0.519	
56 Co	77	0.108	
^{54}Mn	312	0.154	
$^{46}\mathrm{Sc}$	84	0.027	
59 Fe	44	0.047	
^{48}V	16	0.039	

Liquid scintillator (Borexino Nucl. Instr. & Meth. A609 (2009) 58)

Isotope	Activity [mBq/kg]
⁴⁰ K	$3.5\cdot10^{-7}$
238 U	$< 1.2 \cdot 10^{-6}$
232 Th	$< 1.2 \cdot 10^{-6}$
²¹⁰ Pb	$1.7 \cdot 10^{-6}$
²¹⁰ Bi	$1.7 \cdot 10^{-6}$
⁷ Be	$< 1.2 \cdot 10^{-6}$
^{14}C	$4.1 \cdot 10^{-1}$
³⁹ Ar	$3.5\cdot 10^{-6}$
85 Kr	$3.5\cdot 10^{-7}$