

B PHYSICS IN CMS HIGHLIGHTS FROM RUN2

V. Mariani on behalf of the CMS Collaboration

ICNFP 2019

Introduction

- LHC delivered large amount of collisions during Run 2 (~ 6 times Run 1)
- CMS detector had a very high efficiency in data collection (> 90%)
- Some analyses in B-physics suffer from the low statistic -> can benefit from the increasing amount of data.
- o High luminosity also means new challenges:
- New and smarter trigger algorithms
- Sophisticated analysis techniques

CMS Integrated Luminosity, pp, $\sqrt{s}=$ 13 TeV

INTRODUCTION AND OVERVIEW

- LHC delivered large amount of collisions during Run 2 (~ 6 times Run 1)
- CMS detector had a very high efficiency in data collection (> 90%)
- •Some analyses in B-physics suffer from the low statistic -> can benefit from the increasing amount of data.
- High luminosity also means new challenges:
- New and smarter trigger algorithms
- Sophisticated analysis techniques

The latest results from B-physics will be discussed:

- Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states
- o Observation of B_c^+ (2S) and B_c^{+*} (2S) states
- Search for $\tau \rightarrow 3\mu$
- Properties of $B_s^0 \to \mu^+ \mu^-$ and search for $B^0 \to \mu^+ \mu^-$
- Observation of $\Lambda_b \to J/\psi \Lambda \Phi$ decay

PHYSICAL REVIEW LETTERS 121, 092002 (2018)

- o The bottomonium family ($b\bar{b}$) plays a special role in understanding how the QCD binds quarks into hadrons
- o The $\chi_b(3P)$ state is especially interesting since its properties could be affected by the proximity of the open-beauty threshold
- Unresolved $\chi_b(3P)$ state was observed by ATLAS[1], D0[2] and LHCb[3]

Picture from: V. Knünz, Measurement of Quarkonium Polarization to Probe QCD - DOI 10.1007/978-3-319-49935-2_2

The $\chi_b(3P)$ state is reconstructed though the decay:

$$\chi_h \rightarrow \Upsilon(nS)\gamma \rightarrow 2\mu\gamma$$
 where n = 1,2,3

CMS performed the analysis using 2015, 2016, 2017 data (L = 80 fb⁻¹) and observed for the first time the resolved states χ_{b1} (3P) and χ_{b2} (3P)

^[2] Eur. Phys. J. C (2014) 74: 3092

Selection of Y(nS) candidates

2 OS muons with inv mass in 8.5-11.5 GeV, common vertex

 γ candidates : pT > 14 GeV and |y| < 1.2**Dimuon mass resolution** from 60 MeV (y=0) to 120 MeV (y=1.2)

Selection of $\chi_b(nP)$ candidates

Photons reconstructed from the conversion $\gamma \to ee$ γ candidates: pT > 500 MeV and $|\eta| < 1.2$ **Photons energy scale** calibrated in a control sample and applied event by event **Dimuon and photon** are combined and constrained to have a common vertex with prob > 1%

If multiple candidates -> best fit taken

PHYSICAL REVIEW LETTERS 121, 092002 (2018)

PHYSICAL REVIEW LETTERS 121, 092002 (2018)

- $\Upsilon(3S)\gamma$ invariant mass described by an unbinned maximum likelihood fit
- Mass resolution of 2.18 ± 0.32 MeV for the lower peak -> in agreement with the simulations
- Systematic uncertainty sources:
- fit parameters fixed in signal and bkg (0.05 MeV)
- Photon energy correction (0.16 0.17 MeV)
- -> dominant

PHYSICAL REVIEW LETTERS 121, 092002 (2018)

- $\Upsilon(3S)\gamma$ invariant mass described by an unbinned maximum likelihood fit
- Mass resolution of 2.18 ± 0.32 MeV for the lower peak -> in agreement with the simulations
- Systematic uncertainty sources:
- fit parameters fixed in signal and bkg (0.05 MeV)
- Photon energy correction (0.16 0.17 MeV)
- -> dominant

This is the first observation of resolved $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states with masses:

$$M(\chi_{b1}(3P)) = 10513.42 \pm 0.41 \text{ (stat)} \pm 0.18 \text{ (syst)} \pm 0.5 \text{ ($\Upsilon(3S)$)} \text{ MeV}$$

 $M(\chi_{b2}(3P)) = 10524.02 \pm 0.57 \text{ (stat)} \pm 0.18 \text{ (syst)} \pm 0.5 \text{ ($\Upsilon(3S)$)} \text{ MeV}$

 $\Delta M = 10.60 \pm 0.64$ (stat) ± 0.17 (syst) MeV compatible with the theoretical expectations

PHYSICAL REVIEW LETTERS 122, 132001 (2019)

2S

15

- The Bc mesons $(b\bar{c})$ family is predicted to be very populated but the spectroscopy and property studies are still scarces
- The $b\bar{c}$ exited states decay to the ground states via the cascade emission of γ and π pairs -> total width of O(100KeV) -> hard to detect
- ATLAS Collaboration observed a peak with Run 1 data, maybe the superimposition of $B_c^+(2S)$ and $B_c^{*+}(2S)$ [1]
- LHCb didn't confirm the observation with Run 1 data [2] but they saw the double peaks adding Run 2 data [3]

CMS performed the analysis using 2015, 2016, 2017, 2018 data ($L = 143 \text{ fb}^{-1}$) and observed for the first time the resolved states $B_c^+(2S)$ and $B_c^{*+}(2S)$

^[2] J. High Energ. Phys. (2018) 2018: 138 [3] Phys. Rev. Lett. 122 (2019) 232001

PHYSICAL REVIEW LETTERS 122, 132001 (2019)

2 OS muons with inv mass within 2.9-3.3 GeV, pT > 4 GeV, + a track with pT > 3.5 GeV Common displaiced (> 100 μ m) vertex **B**_c+ **candidates** with pT > 15 GeV, |y| < 2.4

p $\label{eq:Bc} \textbf{B}_{c} \text{(2S)} \rightarrow \textbf{B}_{c} \, \boldsymbol{\pi}^{+} \, \boldsymbol{\pi}^{-}$

B_c+ invariant mass fit

- Partially reconstructed bkg, $B_c^+ \rightarrow J/\psi + \pi + X \stackrel{\hookrightarrow}{=} -> ARGUS function$
- Peaking bkg from $B_c^+ \rightarrow J/\psi + K$ -> shape from simulation
- Combinatorial bkg -> first-order Chebyshev polynomial
- Signal peak -> sum of 2 gaussians

 B_c^+ mass = 6271.1 \pm 0.5 MeV with a resolution of 33.5 \pm 2.5 MeV

PHYSICAL REVIEW LETTERS 122, 132001 (2019)

Selection of B_c+(2S) and B_c+*(2S) candidates

Combine two OS charged tracks to the B_c^+ candidate (range 6.2 – 6.335 GeV) Pion with pT > 0.6 and 0.8 GeV Common vertex between B_c^+ and $\pi\pi$

If more candidates found -> the one with highest pT is taken

p

- Peaking bkg from $B_c^+(J/\psi + K)\pi\pi$ -> gaussian

 $B_c(2S) \rightarrow B_c \pi^+ \pi^-$

- Combinatorial bkg -> 3-order
 Chebyshev polynomial
- Signal peak -> sum of 2 gaussians

 $M(B_c \Pi \Pi)$ and $M(B_c)$ are reconstructed invariant masses of the $B_c \Pi \Pi$ and B_c candidates, and m_{Bc} is the world-average B_c mass

Selection of B_c+(2S) and B_c+*(2S) candidates

Combine two OS charged tracks to the B_c^+ candidate (range 6.2 – 6.335 GeV) Pion with pT > 0.6 and 0.8 GeV Common vertex between B_c^+ and $\pi\pi$

If more candidates found -> the one with highest pT is taken

PHYSICAL REVIEW LETTERS 122, 132001 (2019)

Emitted γ not detectable (effi < 1%) -> mass of B_c+*(2S) not measured

Main systematic source: peak modelling (0.7/0.8 MeV)

Significance of 2 peaks instead of 1 is 6.5 σ

First observation of two exited states

SEARCH FOR $\tau \rightarrow 3\mu$, WITH τ COMING FROM D AND B MESONS

CMS-PAS-BPH-17-004

- Search for lepton flavour violation (LFV) in the decay $\tau \to 3\mu$
- Very clean final state for CMS
- Allowed by neutrino oscillation with very small BR
- Some NP models foresees appreciable branching fractions
- So far only upper limit set by Belle [1], BaBar [2], ATLAS [3], LHCb[4]
- The best limit comes from Belle: BR $< 2.1 \cdot 10^{-8}$ (90% CL)

^[3] JINST 3 (2008) S08005

SEARCH FOR $\tau \to 3\mu$, WITH τ COMING FROM D AND B MESONS

CMS-PAS-BPH-17-004

Selection of τ candidates

Muon pT > 2 GeV, muon $|\eta|$ < 2.4 Muons with a common displaced vertex τ candidates: 3 muon with all the muon pairs with $|\Delta R| < 0.8$ and $|\Delta z| < 0.5$ cm. total charge ± 1 trimuon mass range [1.61 - 2] GeV

Normalisation sample

 $D_s^{\pm} \to \phi \pi^{\pm} \to \mu^+ \mu^- \pi^{\pm}$ decays used as normalisation channel

Events selected with the same signal trigger and momentum requests

Used to measure the production rate of D and B mesons in the kinematic phase space relevant for the search, directly from data

Proper decay length (cm)

SEARCH FOR $\tau \to 3\mu$, WITH τ COMING FROM D AND B MESONS

CMS-PAS-BPH-17-004

Mass resolution changes [0.4 – 1.5 %] according to the muon rapidity: 3 categories identified

SEARCH FOR $\tau \rightarrow 3\mu$, WITH τ COMING FROM D AND B MESONS

CMS-PAS-BPH-17-004

Mass resolution changes [0.4 – 1.5 %] according to the muon rapidity: 3 categories identified

A BDT has been used to separate signal and bkg, using as input variables vertex-quality and muon-quality variables
-Signal is taken from simulation
-Bkg from data sb

BDT output used to identify 3 more subcategories. 2 used and 1 rejected

SEARCH FOR $\tau \rightarrow 3\mu$, WITH τ COMING FROM D AND B MESONS

CMS-PAS-BPH-17-004

- Maximum likelihood fit performed on the six categories simultaneously (backup)
- The 6 categories are then combined with the appropriate weights
- Several systematic uncertainties considered:
 D_s normalization dominates (10%)
- No excess observed -> limit set

Expected limit 90% CL : BR $(\tau \to 3\mu) = 9.9 \cdot 10^{-8}$ **Observed** limit 90% CL : BR $(\tau \to 3\mu) = 8.8 \cdot 10^{-8}$

PROPERTIES OF
$$B_s^0 \to \mu^+\mu^-$$
 AND SEARCH FOR $B^0 \to \mu^+\mu^-$ CMS-PAS-BPH-16-004

- Leptonic B meson decays offer excellent opportunities to perform precision tests of the SM because there are minimal hadronic uncertainties.
- o In the SM:

$$BR(B_s^0 \to \mu^+ \mu^-) = (3.57 \pm 0.17)*10^{-9} \text{ and } BR(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09)*10^{-10}$$

- The BR($B_s^0 \to \mu^+ \mu^-$) has been measured by CMS [1], LHCb [2] and ATLAS [3]
- The BR($B^0 \to \mu^+ \mu^-$) has been only measured by CMS and LHCb combined [4]
- o Results on $BR(B_s^0 \to \mu^+ \mu^-)$ and $BR(B^0 \to \mu^+ \mu^-)$ are reported together with the first measurement in CMS of the $B_s^0 \to \mu^+ \mu^-$ effective lifetime

• Used data from 2011, 2012 and 2016 at 3 different center of mass enegies: 7, 8, 13 TeV -> L=5+20+36 fb⁻¹

[1] Phys. Rev. Lett. 111 (2013) 101804 [2] Phys. Rev. Lett. 118 (2017) 191801 [3] JHEP 04 (2019)738 098

[4] Nature 522 (2015) 68

CMS-PAS-BPH-16-004

Signal

Two OS muons from a common vertex

Background

- Combinatorial
- Rare single B decay

Main improvement from the Run1 analysis: <u>better muon identification (via MVA)</u> with a 5% improvement on muon efficiency and a misidentification rate about 10 times lower for global muons

Trigger: dedicated B_s^0 trigger with 2 OS muons with 4.8 < $|m_{\mu\mu}|$ < 6 GeV

Several control sample used for the validation and for the BR calculation

CMS-PAS-BPH-16-004

- A BDT has been used for the signal bkg separation
- Same variables as run1 analysis: B candidates/tracks, vertexing and isolation
- Run1 data are analysed with the old BDT, run2 data with a new one

PROPERTIES OF $B_{\scriptscriptstyle S}^{\,0} \to \mu^{\,+}\,\mu^{\,-}$ AND SEARCH FOR $B^{\,0} \to \mu^{\,+}\,\mu^{\,-}$

CMS-PAS-BPH-16-004

CMS-PAS-BPH-16-004

The B_s^0 peak is clearly visible with an observed significance of 5.6 σ

BR
$$(B_s^0 \to \mu^+ \mu^-) = [2.9^{-0.7}_{-0.6} \pm 0.2(\frac{f_s}{f_u})] \cdot 10^{-9}$$

No significant signal observed for the B⁰

-> upper limit set on the BR BR $(B^0 \to \mu^+\mu^-) < 3.6 \cdot 10^{-10}$ at 95% CL

The B_s^0 lifetime is evaluated with a 2D unbinned maximum likelihood fit

$$au_{\mu^+\mu^-}=1.70^{+0.61}_{-0.44}~{
m ps}$$

CMS-PAS-BPH-19-002

- The study of b baryon decays is important to understand the dynamic of heavy flavour decay process
- \circ Several studies have been carried out by ATLAS, CMS and LHCb on the Λ_b^0
 - mass measurement of ground [1] and exited [2] states, lifetime[3], polarization [4] mostly in $\Lambda_b^0 \to J/\psi \Lambda$
- from the decay of the Λ_b^0 new pentaquarks states have been observed by LHCb [5]

oCMS performed the first observation of the decay $\Lambda_b^0 \to J/\psi \Lambda \phi$ with the measurement of the branching ratio fraction as:

$$\frac{BR(\Lambda_b^0 \to J/\psi \Lambda \phi)}{BR(\Lambda_b^0 \to \psi(2S)\Lambda)} = \frac{N(\Lambda_b^0 \to J/\psi \Lambda \phi)}{N(\Lambda_b^0 \to \psi(2S)\Lambda)} \frac{BR(\psi(2S) \to J/\psi \pi^+ \pi^-)}{BR(\phi \to K^- K^+)} \frac{\epsilon(\Lambda_b^0 \to \psi(2S)\Lambda)}{\epsilon(\Lambda_b^0 \to J/\psi \Lambda \phi)}$$

2018 data collected at 13 TeV have been used-> L ~ 60 fb⁻¹

- [1] Phys. Rev. Lett. 119 (2017) 062001
- [2] Phys. Rev. Lett. 109 (2012) 172003
- [3] Phys. Rev. D 87 (2013) 032002
- [4] Phys. Rev. D 97 (2018) 072010

[5] Phys. Rev. Lett. 122 (2019) 222001

CMS-PAS-BPH-19-002

Object selection

Muon: $pT(\mu \pm) > 4.0 \text{ GeV}, |\eta(\mu \pm)| < 2.4$

J/ ψ : |mJ/ ψ -3096.9 MeV| < 100 MeV, pT (J/ ψ) > 7.0 GeV, vtx prob(J/ ψ) >10%, $I/\psi L/\sigma > 3.0$

Charged tracks: pT(tracks) > 0.8 GeV, $|m_{KK} - 1.02| < 0.03$ GeV for signal,

 $|m_{J/\psi\pi\pi}-m_{\psi(2S)}^{PDG}|<15$ MeV for norm Λ selection: pT $\Lambda>1$ GeV, vtx prob(Λ)>1%,

 $|m\Lambda - mV0| < 7.5 \text{ MeV}$

 Λ_b selection: pT $\Lambda_b > 10$ GeV, L/ $\sigma > 3$, vtx prob(Λ_b)>1%, 1 candidate per event,

 $\cos_{PV}(\alpha) > 0.99$

CMS-PAS-BPH-19-002

Main syst uncertainties: data/simulation difference in Λ_b^0 resolution for the $\Lambda_b^0 \to J/\psi \Lambda \phi$ decay (6.6%)

The first observation of the $\Lambda_b^0 o J/\psi \Lambda \phi$ decay

$$\frac{BR(\Lambda_b^0 \to J/\psi \Lambda \phi)}{BR(\Lambda_b^0 \to \psi(2S)\Lambda)} = 8.26 \pm 0.90(stat) \pm 0.68 (syst) \pm 0.11 (BR) \times 10^{-2}$$

SUMMARY

Very important results have been recently produced in the B-physics group in CMS:

- First observation of the resolved $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states:
- First observation of the resolved B_c^+ (2S) and B_c^{+*} (2S) states:
- oFirst results in CMS for the search for $\tau \to 3\mu$, with τ coming from D and B mesons;
- o Properties of $B_s^0 \to \mu^+ \mu^-$ and search for $B^0 \to \mu^+ \mu^-$ superseding the old CMS results;
- First observation of $\Lambda_b \to J/\psi \Lambda \Phi$ decay:

Interesting results from the B-physics -> more has to come!

THANK YOU FOR THE ATTENTION

BACKUP

Photon energy correction

LHCb results:

$$\sqrt{s}$$
=7,8,13 TeV -> L = 8.5 fb⁻¹

First peak with mass $6841.2\pm0.6(stat)\pm0.1(syst)\pm0.8(B_c^+)$ MeV/c compatible with the $B_c^{**}(2S)$ state

Second peak with a global (local) statistical significance of 2.2σ (3.2σ) and mass of $6872.1\pm1.3(stat)\pm0.1(syst)\pm0.8(B+c)$ MeV/c², consistent with the B+_c (2S) state

SEARCH FOR $\tau \rightarrow 3\mu$, WITH τ COMING FROM D AND B MESONS

BDT training:

signal = signal simulation with mixed the D and B meson samples background = data events from the trimuon mass sb.

10 variables divided in 2 groups:

- Signal with trimuon system from a common vertex displaced from the primary IP (better discriminating)
- Background dominated by muons coming from charged pion/kaon decays in flight or (semi-)random matching between hadron tracks in the tracker and track segments reconstructed in the muon system

SEARCH FOR $\tau \to 3\mu$, WITH τ COMING FROM D AND B MESONS

Search for $\tau \to 3\mu$, with τ coming from D and B mesons

Table 1: The expected inclusive number of τ leptons produced in D and B meson decays at LHC (13 TeV) for an integrated luminosity of 33 fb⁻¹. Numbers are from PYTHIA (without EVTGEN). Charge conjugated states are implied. For comparison, the number of τ leptons produced in W and Z boson decays is 8×10^8 .

Process	Number of τ leptons (33 fb ⁻¹)
$pp \rightarrow c \bar{c} +$	
$D \rightarrow \tau \nu$	$4.0 \times 10^{12} \ (95\% \ D_s, 5\% \ D^{\pm})$
$pp \rightarrow b\overline{b} +$	
$B \rightarrow \tau \nu +$	$1.5 \times 10^{12} (44\% B^{\pm}, 45\% B^{0}, 11\% B_{s}^{0}, 0\% B_{c}^{\pm})$
$B \to D(\tau \nu) +$	$6.3 \times 10^{11} \ (98\% \ D_s, 2\% \ D^{\pm})$

Table 2: D and B meson decay branching fractions (and their uncertainties) used in this analysis.

Process	Branching ratio	Reference
$D_s o au u$	$5.48 \pm 0.23\%$	PDG [13]
$\mathrm{B^+} ightarrow au + u + \mathrm{D^{0(*)}}$	$2.7 \pm 0.3\%$	PDG [13]
Other $B^+ \to \tau + X$ decays	0.7%	PYTHIA [5]
$\mathrm{B}^0 ightarrow au + u + \mathrm{D}^{+(*)}$	$2.7\pm0.3\%$	PDG [13]
Other $B^0 \to \tau + X$ decays	0.7%	PYTHIA [5]
$\mathrm{B^+} \to \mathrm{D_s} + \mathrm{X}$	$9.0 \pm 1.5\%$	PDG [13]
${ m B^0} ightarrow { m D_s} + X$	$10.3\pm2.1\%$	PDG [13]
$\mathrm{D_s} o \phi(\mu\mu)\pi$	$1.3(\pm 0.1) \times 10^{-5}$	PDG [13]

SEARCH FOR $\tau \to 3\mu$, WITH τ COMING FROM D AND B MESONS

Table 3: Number of expected signal events, assuming $\mathcal{B}(\tau \to 3\mu) = 10^{-7}$, and the number of observed events in data at each step of the event selection. Events are counted in the trimuon mass range 1.62–2.00 GeV.

	Si	Data	
	$D_s \to \tau \nu$	$B^{\pm}/B^0 \rightarrow \tau$	
Produced in pp collisions	4.4×10^{5}	1.5×10^{5}	
(with three muons in fiducial volume)	(6.6×10^3)	(2.3×10^3)	
L1/HLT trigger	214	114	
At least 3 global muons ($p_T > 2 \text{ GeV}$)	88	47	1.0×10^{7}
Trimuon candidate selection	64	29	1.0×10^{5}

Table 4: Sources of systematic uncertainties affecting the signal modeling, and their impacts on the expected signal event yield and trimuon mass distribution shape.

Source of uncertainty	Yield	Shape
Uncertainty on D _s normalization [10%]	10%	
Relative uncertainty in $\mathcal{B}(D_s \to \tau \nu)$ [4%]	3%	
Relative uncertainty in $\mathcal{B}(D_s \to \phi \pi \to \mu \mu \pi)$ [8%]	8%	
Relative uncertainty in $\mathcal{B}(B \to D_s +)$ [16%]	5%	
Relative uncertainty in $\mathcal{B}(B \to \tau +)$ [11%]	3%	
Uncertainty in f (B/D ratio) [11%]	3%	
Uncertainty on D ⁺ as a source of τ [100%]	3%	
Uncertainty on B_s as a source of τ [100%]	4%	
Uncertainty in number of events triggered by trimuon trigger [8%]	2%	
Uncertainty in the ratio of acceptances $A_{\text{sig}}/A_{2\mu\pi}$ [1%]	1%	
Muon reconstruction efficiency [1.5%]	1.5%	
Charged pion reconstruction efficiency [2.3%]	2.3%	
BDT cut efficiency [5%]	5%	
Mass scale uncertainty [0.07%]	_	yes
Mass resolution uncertainty [2.5%]	_	ves

SEARCH FOR $\tau \rightarrow 3\mu$, WITH τ COMING FROM D AND B MESONS

Table 5: Signal and data yields for the six event categories in the mass range 1.62–2.00 GeV. The signal yields are shown for $\mathcal{B}(\tau \to 3\mu) = 10^{-7}$. The data yields inside parentheses are in the mass ranges of 1.78 GeV $\pm 2\sigma$, where σ is the mass resolution (12 MeV, 19 MeV, and 25 MeV for the category A, B, and C respectively).

	Sig	nal	Data		
	sub-category 1 sub-category 2		sub-category 1	sub-category 2	
Category A	6.3	10.3	360(44)	2502(319)	
Category B	3.9	18.5	110(27)	2229(449)	
Category C	9.4	9.6	389(107)	1549(400)	

Signal from
$$D_s$$
 $\mathcal{B}(D_s \to \tau \nu)$ $\mathcal{A}_{3\mu(D)} \frac{\mathcal{A}_{3\mu(D)}}{\mathcal{A}_{2\mu\pi}} \frac{\epsilon_{reco}^{3\mu}}{\epsilon_{reco}^{2\mu\pi}} \frac{\epsilon_{trig,sig}^{2\mu}}{\epsilon_{trig(\mu\mu\pi)}^{2\mu}} \mathcal{B}(\tau \to 3\mu)$

Signal from B
$$N_{sig(B)} = f \frac{\mathcal{B}(B \to \tau + \cdots)}{\mathcal{B}(B \to Ds + \cdots)\mathcal{B}(D_s \to \tau \nu)} \frac{\mathcal{A}_{3\mu(B)}}{\mathcal{A}_{3\mu(D)}} N_{sign(D)}$$

SEARCH FOR $\tau \rightarrow 3\mu$, WITH τ COMING FROM D AND B MESONS

Figure 6: The invariant mass distribution for two muons and a pion after applying signal-like kinematic cuts on two muons and a pion, and after requiring that the two muons have opposite signs and their invariant mass is consistent the ϕ meson mass. The two peaks are associated with D_s (1.97 GeV) and D⁺ (1.87 GeV) decays, and modelled with Crystal-Ball functions, while the background is fitted with an exponential function.

Properties of $B_s^0 \to \mu^+\mu^-$ and search for $B^0 \to \mu^+\mu^-$

$$\mathcal{B}_{\text{SM}}(B_s^0 \to \mu^+ \mu^-) = (3.57 \pm 0.17) \times 10^{-9}$$

 $\mathcal{B}_{\text{SM}}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \quad = \quad \frac{n_{B_s^0}^{\text{obs}}}{N(B^+ \to J/\psi \, K^+)} \, \frac{A_{B^+}}{A_{B_s^0}} \, \frac{\varepsilon_{B^+}^{ana}}{\varepsilon_{B_s^0}^{ana}} \, \frac{\varepsilon_{B^+}^{\mu}}{\varepsilon_{B_s^0}^{\mu}} \, \frac{\varepsilon_{B^+}^{trig}}{\varepsilon_{B_s^0}^{trig}} \, \frac{f_u}{f_s} \, \mathcal{B}(B^+ \to J/\psi \, [\mu^+ \mu^-] K^+)$$

$$au_{\mu^{+}\mu^{-}} \equiv rac{\int_{0}^{\infty} t \, \Gamma(B_{s}(t)
ightarrow \mu^{+}\mu^{-}) \, dt}{\int_{0}^{\infty} \Gamma(B_{s}(t)
ightarrow \mu^{+}\mu^{-}) \, dt} = rac{ au_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(rac{1 + 2\mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s} + y_{s}^{2}}{1 + \mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s}}
ight)$$

LHCb:
$$au_{\mu^+\mu^-} = 2.04 \pm 0.44 \pm 0.05 \, \text{ps}, \ \mathcal{B}(B_s^0 o \mu^+\mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

- Variables unchanged compared to Bmm3
- B Candidate/tracks
 - $\triangleright p_{\perp}$ and η
 - ho η_f of 'most-forward' muon ('channel' definition)
 - $ightharpoonup d_{\mathrm{ca}}^{\mathrm{max}}$: maximum d_{ca} between B tracks

- Vertexing (of B-SV)
 - \triangleright PV chosen based on minimum $|\ell_z|$ (not pointing angle)
 - $\triangleright \alpha_{3D}$, ℓ_{3D} , $\ell_{3D}/\sigma(\ell_{3D})$, δ_{3D} , $\delta_{3D}/\sigma(\delta_{3D})$: in 3D, PV refitted w/o B tracks
 - $ho \chi^2/\mathrm{dof}$: for dimuon vertex (also for $B \to J/\psi X$, refitted for this purpose)
- Isolation
 - ho \sum_{trk} w/ tracks from $B ext{-PV}$ or no other PV, but passing d_{ca} requirement
 - $I \equiv p_{\perp B}/(p_{\perp B} + \sum_{\sf trk} p_{\perp})$: $p_{\perp} > 0.9, \Delta R < 0.7, d_{\sf ca} < 0.05 \, {\sf cm}$
 - $I_{\mu} \equiv p_{\perp \mu}/(p_{\perp \mu} + \sum_{\sf trk} p_{\perp})$: $p_{\perp} > 0.5, \Delta R < 0.5, d_{\sf ca} < 0.1\,{\sf cm}$
 - ho $N_{
 m trk}^{
 m close}$: count tracks with $p_{\perp}>0.5\,{
 m GeV}$ and $d_{
 m ca}<0.03\,{
 m cm}$
 - $ightharpoonup d_{\mathrm{ca}}^0$: minimum d_{ca} of these tracks to $B ext{-SV}$

Source	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) [\%]$	$ au_{\mu^{+}\mu^{-}}$ [ps]
		2D UML	sPlot
Kaon tracking	2.3-4	_	_
Normalization yield	4	_	_
Background yields	1	0.03	(*)
Production process	3	_	_
Muon identification	3	_	_
Trigger	3	_	_
Efficiency (data/MC simulation)	5–10		(*)
Efficiency (functional form)	_	0.01	0.04
Efficiency lifetime dependence	1–3	(*)	(*)
Era dependence	5–6	0.07	0.07
BDT discriminator threshold	- //	0.02	0.02
Silicon tracker alignment	- //	0.02	<u></u>
Finite size of MC sample	_ \\	0.03	\rightarrow
Fit bias	$\overline{}$	_	0.09
C-correction	K /	0.01	0.01
Total systematic uncertainty	$\binom{+0.3}{-0.2} \times 10^{-9}$	0.09	0.12
Total uncertainty	$\binom{+0.7}{-0.6} \times 10^{-9}$	$^{+0.61}_{-0.44}$	$^{+0.52}_{-0.33}$

Category	$N(B_s^0)$	$N(B^0)$	$N_{\rm comb}$	$N_{ m obs}^{B^+}/100$	$\langle p_{\mathrm{T}}(B_s^0) \rangle [\mathrm{GeV}]$	$\varepsilon_{ m tot}/\varepsilon_{ m tot}^{B^+}$
2011/central/high	$3.6^{+0.9}_{-0.8}$	$0.4^{+0.7}_{-0.6}$	8.4 ± 3.8	750 ± 30	16.4	3.9 ± 0.5
2011/forward/high	$2.0_{-0.4}^{+0.5}$	$0.2^{+0.4}_{-0.3}$	3.2 ± 2.2	220 ± 12	14.9	7.5 ± 0.8
2012/central/low	$3.7^{+0.9}_{-0.8}$	$0.4^{+0.6}_{-0.6}$	115.8 ± 11.3	790 ± 32	16.1	3.8 ± 0.5
2012/central/high	$9.3^{+2.3}_{-2.1}$	$1.0^{+1.7}_{-1.6}$	30.2 ± 7.3	2360 ± 95	17.3	3.2 ± 0.4
2012/forward/low	$1.7^{+0.4}_{-0.4}$	$0.2^{+0.3}_{-0.3}$	116.7 ± 11.0	190 ± 9	14.3	7.3 ± 1.0
2012/forward/high	$4.7^{+1.2}_{-1.1}$	$0.5^{+0.9}_{-0.8}$	31.0 ± 6.5	660 ± 27	15.5	5.9 ± 0.8
2016A/central/low	$2.2^{+0.5}_{-0.5}$	$0.2^{+0.4}_{-0.4}$	43.0 ± 7.1	580 ± 23	17.5	3.1 ± 0.4
2016A/central/high	$4.0^{+1.0}_{-0.9}$	$0.4^{+0.8}_{-0.7}$	13.3 ± 4.7	1290 ± 57	19.3	2.5 ± 0.3
2016A/forward/low	$3.7^{+0.9}_{-0.8}$	$0.4^{+0.7}_{-0.7}$	168.8 ± 13.5	780 ± 31	15.8	3.9 ± 0.5
2016A/forward/high	$8.1^{+2.0}_{-1.8}$	$0.8^{+1.5}_{-1.4}$	64.2 ± 9.7	1920 ± 78	17.5	3.4 ± 0.4
2016B/central/low	$4.1^{+1.0}_{-0.9}$	$0.4^{+0.8}_{-0.7}$	128.8 ± 12.0	1020 ± 44	17.2	3.3 ± 0.4
2016B/central/high	$3.6^{+0.9}_{-0.8}$	$0.4^{+0.7}_{-0.6}$	7.8 ± 3.6	1320 ± 54	20.8	2.2 ± 0.2
2016B/forward/low	$6.1^{+1.5}_{-1.4}$	$0.6^{+1.1}_{-1.0}$	133.4 ± 12.5	1260 ± 51	16.2	3.9 ± 0.4
2016B/forward/high	$3.9^{+1.0}_{-0.9}$	$0.4^{+0.8}_{-0.7}$	14.1 ± 4.6	1180 ± 49	19.5	2.7 ± 0.3

	20	011	20	012	20	16A	20	16B
Channel	Central	Forward	Central	Forward	Central	Forward	Central	Forward
BDT	0.22	0.19	0.32	0.32	0.22	0.30	0.22	0.29

Figure 6: (Left) Likelihood contours for the fit to the branching fractions $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ and $\mathcal{B}(B^0 \to \mu^+ \mu^-)$, together with the SM expectation. The contours correspond to regions with 1–5 standard deviation coverage. (Right) The quantity 1 – CL as a function of the assumed $B^0 \to \mu^+ \mu^-$ branching fraction. The dashed curve shows the median expected value for the background-only hypothesis while the solid line is the observed value. The green region indicates the 1 standard deviation uncertainty band.

Properties of $B_s^0 \to \mu^+ \mu^-$ and search for $B^0 \to \mu^+ \mu^-$

From Run1 analysis:

BR(Bs to mu+ mu-) = (3 +1.0/-0.9)E-9.

An excess of B(s) to mu+ mu- events with respect to background is observed with a significance of 4.3 standard deviations.

For the decay B0 to mu+ mu- an upper limit of BR(B0 to mu+ mu-) < 1.1E-9 at the 95% confidence level is determin

CMS + LHC measured BR(B0 to mu+ mu-) = $3.9^{+1.6}_{-1.4} *10^{-10}$ and BR(Bs to mu+ mu-) = $2.8^{+0.7}_{-0.6} *10^{-9}$

To extract the yield of $\Lambda^0_b \to J/\psi \Lambda \Phi$ decay the background-subtracted distribution of M(K+K-) is fitted with the convolution of a Gaussian and a relativistic Breit-Wigner functions for the Φ signal and with a first-order Bernstein polynomial for the non- Φ background.

The natural width of the Φ meson is fixed to the world-average value since it is measured with a good precision

Table 1: Summary of the relative systematic uncertainties in $\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda \phi)/\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda)$.

Source	Relative uncertainty (%)
Data/simulation difference in the η and two-body mass distributions	0.2
Background model in $M(J/\psi \Lambda K^+K^-)$ distribution	0.6
Background model in $M(\psi(2S)\Lambda)$ distribution	0.8
Background model in $M(K^+K^-)$ distribution	0.8
Signal model in $M(J/\psi \Lambda K^+K^-)$ distribution	0.8
Signal model in $M(\psi(2S)\Lambda)$ distribution	1.1
Signal model in $M(K^+K^-)$ distribution	0.5
Data/simulation difference in Λ_b^0 resolution for the $\Lambda_b^0 \to J/\psi \Lambda \phi$ decay	6.6
Data/simulation difference in Λ_b^0 resolution for the $\Lambda_b^0 \to \psi(2S)\Lambda$ decay	3.1
Data/simulation difference in ϕ resolution	1.4
Simulation sample size	2.9
Total systematic uncertainty	8.2