Jet quenching and charmonia suppression from Effective Quenching model

Martin Spousta

Charles University Prague

- Physics of the suppression =
 parton energy loss in fluctuating
 hot nuclear matter
- •=> Some observables (I_{AA}, R_{AA} of particles, ...) result from a **complicated convolution** of: hard parton spectra, dependence of the loss on the flavor and parton shower shapes, path-length...
- •=> All observables are convolutions of (non-trivial) initial conditions and (non-trivial) energy loss

Two paths:

- •Be as realistic as one can:
 - MC generators
 - Model full evolution of medium (JETSCAPE Collaboration)
 - theory calculations of parton enegy loss

Two paths:

- •Be as realistic as one can:
 - MC generators
 - Model full evolution of medium (JETSCAPE Collaboration)
 - theory calculations of parton enegy loss
- •Be simple and try to identify what plays a major role for a given observable (e.g. flavor, coherence, path length, fluctuations, ...):
 - theory calculations of parton enegy loss
 - parametric modeling of parton energy loss

Two paths:

- •Be as realistic as one can:
 - MC generators
 - Model full evolution of medium (JETSCAPE Collaboration)
 - theory calculations of parton enegy loss
- •Be simple and try to identify what plays a major role for a given observable (e.g. flavor, coherence, path length, fluctuations, ...):
 - theory calculations of parton enegy loss
 - parametric modeling of parton energy loss

Phys.Rev. Lett. 119 (2017) 062302

Phys.Lett B767 (2017) 10

Eur.Phys.J. C76 (2016) no.2, 50

arXiv:1702.01931

arXiv:1908+ε.XXXX

Two paths:

- •Be as realistic as one can:
 - MC generators
 - Model full evolution of medium (JETSCAPE Collaboration)
 - theory calculations of parton enegy loss
- •Be simple and try to identify what plays a major role for a given observable (e.g. flavor, coherence, path length, fluctuations, ...):
- theory calculations of parton enegy loss

 parametric modeling of parton energy loss

 Phys.Rev. Lett. 119
 (2017) 062302

 Phys.Lett B767
 (2017) 10

 Eur.Phys.J. C76
 (2016) no.2, 50

 arXiv:1702.01931

 arXiv:1906+ε.XXXX

This talk ...

... use a simple model with minimal assumptions on the quenching physics to extract basic properties of the jet quenching

The simplest modeling of parton energy loss

$$\frac{dN}{dp_{\mathrm{T}}^{\mathrm{jet}}} = A \left[f_{q_0} \left(\frac{p_{T_0}}{p_{\mathrm{T}}^{\mathrm{jet}}} \right)^{n_q} + \left(1 - f_{q_0} \right) \left(\frac{p_{T_0}}{p_{\mathrm{T}}^{\mathrm{jet}}} \right)^{n_g} \right]$$

Jet spectra parameterized by a power law

Fraction of jets of a given flavor (i.e. quark or gluon initiated)

$$f_q\left(p_{\mathrm{T}}^{\mathrm{jet}}\right) = \frac{1}{1 + \left(\frac{1 - f_{q_0}}{f_{q_0}}\right) \left(\frac{p_{T_0}}{p_{\mathrm{T}}^{\mathrm{jet}}}\right)^{n_g - n_q}}$$

The simplest parametric modeling of parton energy loss

$$\frac{dn_{\mathrm{Q}}(p_{\mathrm{T}}^{\mathrm{jet}})}{dp_{\mathrm{T}}^{\mathrm{jet}}} = \frac{dn\left(p_{\mathrm{T}}^{\mathrm{jet}} + S(p_{\mathrm{T}}^{\mathrm{jet}})\right)}{dp_{\mathrm{T}}^{\mathrm{jet}}} \times \left(1 + \frac{dS}{dp_{\mathrm{T}}^{\mathrm{jet}}}\right)$$

Yield of quenched jets of a given flavor at given pt

R_{AA} in the approximation of fractional energy loss

$$S_q \equiv sp_T$$
 Fractional energy loss

$$R_{\text{AA}} = f_q \left(\frac{1}{1 + S_q / p_{\text{T}}^{\text{jet}}} \right)^{n_q} \times \left(1 + \frac{dS_q}{dp_T} \right) + \left(1 - f_q \right) \left(\frac{1}{1 + S_g / p_{\text{T}}^{\text{jet}}} \right)^{n_g} \times \left(1 + \frac{dS_g}{dp_T} \right)$$

Jet R_{AA} in the simplest model

Jet R_{AA} in the simplest model

Realistic parametric model

$$\frac{dn}{dp_{\rm T}^{\rm jet}} = A \left(\frac{p_{T0}}{p_{\rm T}^{\rm jet}}\right)^{n+\beta \log \left(p_T^{\rm jet}/p_{T0}\right)}$$

Realistic parameterization of input jet spectra

General modeling of jet energy loss

$$S = s' \left(\frac{p_T^{\text{jet}}}{p_{T0}}\right)^{\alpha}$$

Jet R_{AA} in realistic model

Jet R_{AA} in realistic model

 \rightarrow Slow evolution with p_T and no rapidity dependence of jet R_{AA} can be interpreted as a result of different energy loss of quark and gluon initiated jets

Jet R_{AA} in realistic model

-> Flatness and no rapidity dependence of jet R_{AA} can be interpreted to be a result of different energy loss of quark and gluon initiated jets

Quantifying the parton energy loss, fixed c_{F}

$$S_q = s' \left(\frac{p_T^{\text{jet}}}{p_{T,0}}\right)^{\alpha}$$

$$S_g = c_{\rm F} \times S_q$$
 Fixed to 9/4

Quantifying the parton energy loss, fixed c_{F}

$$S_q = s' \left(\frac{p_T^{\text{jet}}}{p_{T,0}}\right)^{\alpha}$$

Quantifying the parton energy loss, fixed c_F

Quantifying the parton energy loss, free c_F

$$S_q = s' \left(\frac{p_T^{\text{jet}}}{p_{T,0}}\right)^{\alpha}$$
 $S_g = c_F \times S_q$

•Use rapidity differential jet R_{AA} measurement to perform a **multidimensional fit** and extract α , s' and c_F simultaneously (Input: **NLO** spectra – POWHEG+PYTHIA8 + 3 variations of PDFs)

- Vacuum value of c_F measured and evaluated in pQCD (MLLA calculations)
- In vacuum, $c_F = 1.7-1.8$ for Q=20-100 GeV
- In-medium: $c_F = 1.78 \pm 0.12$ consistent with the value in the vacuum (Useful discussion on c_F also in arXiv:1812.06019)

19

Quantifying the parton energy loss

$$S_q = s' \left(\frac{p_T^{\text{jet}}}{p_{T,0}}\right)^{\alpha}$$
 $S_g = c_F \times S_q$

- •Use rapidity differential jet R_{AA} measurement to perform a **multidimensional fit** and extract α , s' and c_F simultaneously (Input: **NLO** spectra POWHEG+PYTHIA8 + 3 variations of PDFs)
- Full result:

$s' = x \cdot N_{\text{part}} + y$	$x = (12.3 \pm 1.4) \cdot 10^{-3} \text{ GeV},$ $y = 1.5 \pm 0.2 \text{ GeV}$
α	0.52 ± 0.02
$c_{ m F}$	1.78 ± 0.12

• Average jet quenching encapsulated in 4 parameters.

5.02 TeV versus 2.76 TeV

- Same jet R_{AA} ... but that does not imply same energy loss.
- Spectra shape and flavor admixture are different
 => energy loss must be different.
- About 10% larger energy loss at 5.02 TeV compared to 2.76 TeV.

Note

- ... jet R_{AA} ... as a result of different energy loss of quark- and gluon-initiated jets
- Alternative: shower shape wide jets lose more than narrow.
- How to distinguish?
- Do as **many comparisons** with data as possible (in the kinematic region insensitive to in-cone radiation / recoil effects). Here:
 - Rapidity dependence of the R_{AA},
 - Behavior of the R_{AA} in the forward region,
 - Jet fragmentation,
 - Jet shapes.
- More info in the **backup**: charged particle R_{AA} , b-jet R_{AA} , z_g , high- p_T charmonia, ... and more to come
- Do as many comparisons as possible ... and **look for a failure** (by seeing a failure of the model one can learn new stuff)

Predictions for the forward region

 \rightarrow The jet R_{AA} should decrease in the forward region

Measurement in the forward region

 \rightarrow The jet R_{AA} does decrease in the forward region

PRC 98 (2018) 024908 EPJC 77 (2017) 379 PRC 90 (2014) 024908

Modifications of fragmentation functions

- How is the parton shower modified by the QCD medium?
- Basic picture ...

Black = vacuum component of PS Red = medium induced radiation

Medium resolves parton shower

e.g.: Phys. Lett. B345 (1995), 277 Nucl. Phys. B582 (2000), 409 Phys. Rev. Lett. 85 (2000), 5535 Phys. Rev. D50 (1994), 1951 JHEP 12 (2001), 009 c) = a && b

For some configurations medium resolves parton shower

(d) = a || b || c + more

1/2/2

radiation
+ jet excites
medium =>
"recoiling"
particles from

.g.: Phys. Rev. Lett. 106 (2011) Phys. Lett. B725 (2013), 357 Phys. Rev. Lett. 111 (2013), 052001

e.g.: Phys. Rev. C80 (2009) 054913 Phys. Rev. C96 (2017) no.3, 034903 Phys.Lett. B779 (2018) 409-413

Modifications of fragmentation functions

- How is the parton shower modified by the QCD medium?
- Basic picture ...

Black = vacuum component of PS Red = medium induced radiation

Medium resolves parton shower

e.g.: Phys. Lett. B345 (1995), 277 Nucl. Phys. B582 (2000), 409 Phys. Rev. Lett. 85 (2000), 5535 Phys. Rev. D50 (1994), 1951 JHEP 12 (2001), 009

Emission is coherent

e.g.: Phys. Rev. Lett. 106 (2011) Phys. Lett. B725 (2013), 357 Phys. Rev. Lett. 111 (2013), 052001

c) = a && b

= a || b || c + more

Modifications of fragmentation functions

- How is the parton shower modified by the QCD medium?
- Basic picture ...

Black = vacuum component of PS Red = medium induced radiation

Medium resolves parton shower

e.g.: Phys. Lett. B345 (1995), 277 Nucl. Phys. B582 (2000), 409 Phys. Rev. Lett. 85 (2000), 5535 Phys. Rev. D50 (1994), 1951 JHEP 12 (2001), 009

Emission is coherent

e.g.: Phys. Rev. Lett. 106 (2011) Phys. Lett. B725 (2013), 357 Phys. Rev. Lett. 111 (2013), 052001

c) = a && b

For some configurations medium resolves parton shower

a || b || c + more

in-cone radiation

+ jet excites medium => "recoiling" particles from the medium

e.g.: Phys. Rev. C80 (2009) 054913 Phys. Rev. C96 (2017) no.3, 034903 Phys.Lett. B779 (2018) 409-413

Modifications of fragmentation functions

-> Subtract the energy from the jet / initial parton and then let it fragment as in the vacuum

Modifications of fragmentation functions

Subtract the energy from the jet / initial parton and then let it fragment as in the vacuum

Modifications of

Excess of low-z not due to flavor effects (due to in-cone radiation or recoil effects)

he jet / initial parton and e vacuum

- -> Structure seen at intermediate and high-z is due to the difference in quenching of quark and gluon initiated jets
- -> Speaks in favor of presence of color coherence effects in the

Some level of disagreement? Will get back to it ...

Transverse structure of jet (jet shape)

Subtract the energy from the jet / initial parton and then let it fragment as in the vacuum

$$126 < p_{T,jet} < 158 \text{ GeV}$$

- $6.3 < p_T^{ch} < 10.0 \text{ GeV}$
 - Pythia8
 - Herwig7
 - ATLAS Preliminary
- r<0.05: values well reproduced (for all p_T^{ch} bins)
- **r>0.05**: trends similar but magnitude very different two particular possibilities:
 - 1) **Input spectra** are not well modeled (sub-dominant contributions to jet p_T)
 - 2) **Coherent picture** breaks for ~100 GeV jets at r~0.05

$$126 < p_{T,jet} < 158 \text{ GeV}$$

- $10 < p_T^{ch} < 26 \text{ GeV}$
 - Pythia8
 - Herwig7
 - ATLAS Preliminary
- r<0.05: values well reproduced (for all p_T^{ch} bins)
- **r>0.05**: trends similar but magnitude very different two particular possibilities:
 - 1) **Input spectra** are not well modeled (sub-dominant contributions to jet p_T)
 - 2) **Coherent picture** breaks for ~100 GeV jets at r~0.05

$$126 < p_{T,jet} < 158 \text{ GeV}$$

 $p_T^{ch} > 26 \text{ GeV}$

- Pythia8
- Herwig7
- ATLAS Preliminary
- r<0.05: values well reproduced (for all p_T^{ch} bins)
- **r>0.05**: trends similar but magnitude very different two particular possibilities:
 - 1) **Input spectra** are not well modeled (sub-dominant contributions to jet p_T)
 - 2) **Coherent picture** breaks for ~100 GeV jets at r~0.05

Excess of low-z not due to flavor effects (due to in-cone radiation or recoil effects)

- These low-z hadrons contribute to the measured jet energy. Parameter s' contains this soft part.
- Soft part contributes to the measured fragmentation via denominator of z.

$$p_{\mathrm{T,jet}}^{\mathrm{measured}} = p_{\mathrm{T,jet}}^{\mathrm{quenched}} + p_{\mathrm{T}}^{\mathrm{soft}}$$

Excess of low-z not due to flavor effects (due to in-cone radiation or recoil effects)

 $p_{\mathrm{T,jet}}^{\mathrm{measured}} = p_{\mathrm{T,jet}}^{\mathrm{quenched}} + p_{\mathrm{T}}^{\mathrm{soft}}$

- •These low-z hadrons contribute to the measured jet energy. Parameter s' contains this soft part.
- •Soft part contributes to the measured fragmentation via denominator of *z*.

Contribution of soft hadrons to the jet energy can be estimated from the measurement at low-z => fragmentation distributions w/ correct soft contribution

–> Prediction: detailed measurement of fragmentation at the highest-z (or lowest-ξ) should exhibit a depletion

$$p_{\mathrm{T,jet}}^{\mathrm{measured}} = p_{\mathrm{T,jet}}^{\mathrm{quenched}} + p_{\mathrm{T}}^{\mathrm{soft}}$$

–> Prediction: detailed measurement of fragmentation at the highest-z (or lowest-ξ) should exhibit a depletion

Example of other observables: non-groomed jet mass

A hint of possible shift to lower jet mass values seen in the data

Example of other observables: non-groomed jet mass

... but rather complicated observable: significant flavor dependence + dependence on recoil at low- p_T

A hint of possible shift to lower jet mass values seen in the data

Data tell us that the medium largely sees a jet as one object => what about other objects with a structure that are suppressed?

Data tell us that the medium largely sees a jet as one object => what about other objects with a structure that are suppressed?

Data tell us that the medium largely sees a jet as one object => what about other objects with a structure that are suppressed?

Data tell us that the medium largely sees a jet as one object => what about other objects with a structure that are suppressed?

... check the differences between the suppression of jets and charmonia at high- p_T (at the LHC at mid-rapidity)

Input:

- Measured pp spectra of charmonia (cannot rely on out of the box PYTHIA or other generator)
- Energy loss extracted from jets

Charmonia

Charmonia

... suppression of both charmonia at $p_T>6.5$ GeV is similar to the suppression of light quark jets

Summary

- Flavor dependence of the jet quenching seems to drive quite a lot of what we see in the data.
- Average jet quenching can be quantified from the data as follows:

$s = x \cdot N_{\text{part}} + y$	$x = 12.3 \pm 1.4 \text{ GeV},$ $y = 1.5 \pm 0.2 \text{ GeV}$
α	0.52 ± 0.02
$c_{ m F}$	1.78 ± 0.12

$$S_q = s' \left(\frac{p_T^{\text{jet}}}{p_{T,0}}\right)^{\alpha} \quad S_g = c_F \times S_q$$

- Coherence effects seem to be important, but for jets with pt~100 GeV they seem to break at r~0.05.
- **Recoil** (or in-cone radiation) can modify kinematic regions where one would not expect that (e.g. high-z fragmentation).
- Precision is really needed:
 - precision data are needed to understand details (recoil via high-z fragmentation, jet shapes at low r; flavor via V-jets).
 - precision MC is needed to have the reference under the control.
- Suppression of **charmonia** at $p_T>6.5$ GeV at midrapidity behaves like the suppression of light quark **jets**.

Slides with more information

5.02 TeV versus 2.76 TeV

- •Same jet R_{AA} ... but that does not imply same energy loss.
- Spectra shape and flavor admixture are different=> energy loss must be different.

5.02 TeV versus 2.76 TeV

- •Same jet R_{AA} ... but that does not imply same energy loss.
- Spectra shape and flavor admixture are different
 => energy loss must be different.
- About 10% larger energy loss at 5.02 TeV compared to 2.76 TeV.

Groomed z_g ... checking the impact of jet flavor

Groomed z_g ... checking the impact of jet flavor

Modifications of fragmentation functions

From jet internal structure to charged particle R_{AA}

Each particle of a given p_T must be in a jet of the same or higher p_T => Charged particle R_{AA} (at high- p_T) = convolution of flavor dependent jet suppression and fragmentation functions

From jet internal structure to charged particle R_{AA}

Jets at RHIC versus LHC

- Jets very different between LHC and RHIC
- Jet spectra for a given flavor more steep at RHIC
- Flavor composition also different
 - —> Will impact charged particle R_{AA}
 - Apply the effective quenching factors extracted at the LHC to RHIC jets

b-jets suppression

- •b-jet R_{AA} ... comparable with inclusive jet R_{AA} ... but again, spectral shapes are different
- Moreover, just one flavor => direct comparison misleading

b-jets suppression

- •b-jet R_{AA} ... comparable with inclusive jet R_{AA} ... but again, spectral shapes are different
- Moreover, just one flavor => direct comparison misleading
- Use the model + b-jet crosssection measurement to quantify the difference between inclusive jets and b-jets.
- Results of minimization wrt to (statistically limited) data + including role of gluon splitting:
 b-jets are suppressed by
 1.5±0.4 more than light quark jets.

Charged particle R_{AA} RHIC vs LHC

- Underlying jet spectra very different between RHIC and LHC
- Effective quenching factors from LHC applied to RHIC parton/jet spectra
- *Same quenching leads to smaller R_{AA} in the case of RHIC

=> Initial parton spectra and flavor composition are very important for the extraction of the size of jet quenching

- —> The subleading jet is quenched very differently then the leading jet —> quantify
- -> The subleading jet in the maximum of the x_J is suppressed by a factor of \sim 3 larger than the leading jet

Unused slides, technical details

Modifications of fragmentation functions – prediction

... central rapidity – higher yields at high-z (but not by much)

Modifications of fragmentation functions – prediction

Z

Z

Modifications of fragmentation functions – prediction

66

Start: Two basic questions

- •Why do have the jet and charge particle R_{AA} almost **no rapidity dependence** given quite different input parton spectra and flavor composition at different rapidities?
- What is responsible for the enhancement (= not suppression) at high z seen in the fragmentation?

Start: Two basic questions

- •Why do have the jet and charge particle R_{AA} almost **no rapidity dependence** given quite different input parton spectra and flavor composition at different rapidities?
- What is responsible for the enhancement (= not suppression) at high z seen in the fragmentation?

-> Use a simple model with minimal assumptions on the quenching physics to extract basic properties of the jet quenching

$$x_{\rm J} = \frac{p_{\rm T, subleading}}{p_{\rm T, leading}}$$

 $x_{\rm J} = \frac{p_{\rm T, subleading}}{p_{\rm T, leading}}$

Test the role of path-length dependence

$$S(p_{T,\text{ini}}, l) =$$

$$= \frac{c_{F}s}{\langle l \rangle} \left(\frac{p_{T,\text{ini}}}{p_{T,0}}\right)^{\alpha} f(l)$$

$$l^{k}$$

$$k = 0.5, 1, 2, 3$$

$$l = \int d\tau \tau \rho(\vec{r})$$

Test the role of path-length dependence

Test the role of path-length dependence

Path-length or fluctuations in IC have no major impact (similar conclusions in EPJC 76 (2016) no.5, 288)

73

 X_{J}

Test the role of flavor

$$S(p_{T,\text{ini}}, l) = \frac{c_{\text{F}}s}{\langle l^{k(c_{\text{F}})} \rangle} \left(\frac{p_{T,\text{ini}}}{p_{T,0}}\right)^{\alpha} f(l^{k(c_{\text{F}})})$$

Peaking in the configurations when the loss of quark jets is more non-linear than the loss of gluon jets

... contra-intuitive

Flavor fractions and fit parameters

Fit type	Parameter	y < 2.1	y < 0.3	0.3 < y < 0.8	1.2 < y < 2.1
All	f_{q_0}	0.34	0.28	0.29	0.40
Power law	n_q	5.66	5.37	5.40	6.15
	n_g	6.25	5.97	6.09	6.92
Extended power law	n_q	4.19	4.34	4.27	3.75
	$oldsymbol{eta_q}$	0.71	0.49	0.54	1.2
	n_g	4.69	4.55	4.57	4.60
	$oldsymbol{eta}_{oldsymbol{g}}$	0.80	0.71	0.76	1.2

D(z) parameterization

$$D(z) = a \cdot \frac{(1+dz)^b}{(1+ez)^c} \cdot \exp(-fz)$$

	а	b	С	d	e	f
Quark	318	2.51	1.44	-0.85	52.4	0
Gluon	574	1.87	2.32	9.09	32.0	10.3

R_{AA} – full analytic expression

$$\begin{split} R_{\rm AA} &= f_q \left(\frac{1}{1 + S_q/p_{\rm T}^{\rm jet}} \right)^{n_q + \beta_q \log((p_{\rm T}^{\rm jet} + S_q)/p_{\rm T0})} \\ &\times \left(\frac{p_{\rm T0}}{p_{\rm T}^{\rm jet}} \right)^{\beta_q \log(1 + S_q/p_{\rm T}^{\rm jet})} \left(1 + \frac{dS_q}{dp_{\rm T}^{\rm jet}} \right) \\ &+ \left(1 - f_q \right) \left(\frac{1}{1 + S_g/p_{\rm T}^{\rm jet}} \right)^{n_g \beta_g \log((p_{\rm T}^{\rm jet} + S_g)/p_{\rm T0})} \\ &\times \left(\frac{p_{\rm T0}}{p_{\rm T}^{\rm jet}} \right)^{\beta_g \log(1 + S_g/p_{\rm T}^{\rm jet})} \left(1 + \frac{dS_g}{dp_{\rm T}^{\rm jet}} \right), \\ f_q \left(p_{\rm T}^{\rm jet} \right) &= \frac{1}{1 + \left(\frac{1 - f_{q_0}}{f_{q_0}} \right) \left(\frac{p_{\rm T0}}{p_{\rm jet}^{\rm jet}} \right)^{n_g - n_q + (\beta_g - \beta_q) \log \left(p_{\rm T}^{\rm jet}/p_{\rm T0} \right)}}. \end{split}$$

Minimization in (I.)

How is the soft excess estimated:

Measured

(at least partially)

$$\Phi_{\text{inc}}^{\text{soft}} = f_q^{\text{int}} \Phi_q^{\text{soft}} + (1 - f_q^{\text{int}}) \Phi_g^{\text{soft}}$$

$$\Phi_{g}^{\text{soft}} = c_F \Phi_{q}^{\text{soft}}$$

$$D^{\text{meas}}(z) = f_q^{\text{int}} D_q(z[1 + \Phi_q^{\text{soft}}]) + (1 - f_q^{\text{int}}) D_g(z[1 + \Phi_g^{\text{soft}}])_{0.9}$$

Charmonia in p+Pb

Feed down

ATLAS, JHEP 07 (2014) 154

Feed down

ATLAS, JHEP 07 (2014) 154

Introduction

Two paths:

- •Be as realistic as one can:
 - MC generators
 - JETSCAPE Collaboration
 - theory

JEWEL

(jewel.hepforge.org)

QPythia

(igfae.usc.es/qatmc)

Martini

(PRC 80 (2009) 054913)

tions of parton enegy loss

The Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (goal provide modular software which includes: modeling of initial state + dynamical evolution of QGP + jet energy loss + advanced statistical tools; http://jetscape.wayne.edu/)

parametric modeling of parton energy loss

Phys.Rev. Lett. 119 (2017) 062302

Phys.Lett B767 (2017) 10

Eur.Phys.J. C76 (2016) no.2, 50

arXiv:1702.01931