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Introduction

Physics of the suppression = 
parton energy loss in fluctuating 
hot nuclear matter

=> Some observables (IAA, RAA of 
particles, ...) result from a 
complicated convolution of: hard 
parton spectra, dependence of the 
loss on the flavor and parton 
shower shapes, path-length...

=> All observables are convolutions 
of (non-trivial) initial conditions and 
(non-trivial) energy loss
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Introduction

Two paths:
Be as realistic as one can:

– MC generators 

– Model full evolution of medium (JETSCAPE Collaboration)

– theory calculations of parton enegy loss
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This talk ...

… use a simple model with minimal 
assumptions on the quenching 

physics to extract basic properties of 
the jet quenching
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The simplest modeling of 
parton energy loss

Jet spectra 
parameterized by 

a power law

Fraction of jets of a 
given flavor (i.e. quark 

or gluon initiated)
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The simplest parametric 
modeling of parton energy loss

Yield of quenched jets of a 
given flavor at given pt

RAA in the approximation of 
fractional energy loss

Fractional 
energy 

loss
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Jet RAA in the simplest model
rapidity

ce
nt

ra
lit

y

2.76 TeV
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Jet RAA in the simplest model

The simplest model does not work because: 
–> jet spectra are not a simple power law
–> fractional energy loss is not realized in

the nature

2.76 TeV
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Realistic parametric model

Realistic parameterization of 
input jet spectra

General modeling of jet 
energy loss
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Jet RAA in realistic model

2.76 TeV
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Jet RAA in realistic model

–> Slow evolution with pT and no rapidity dependence of jet 
RAA can be interpreted as a result of different energy loss of 
quark and gluon initiated jets

2.76 TeV
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Jet RAA in realistic model

–> Flatness and no rapidity dependence of jet RAA can be 
interpreted to be a result of different energy loss of quark and 
gluon initiated jets
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Quantifying the 
parton energy loss, fixed cF

Fixed to 9/4
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Quantifying the 
parton energy loss, fixed cF

Effective 
power ~ 0.55

Linear dependence 
of s' on Npart

Fixed to 9/4

Quark with pT=40 GeV 
(pT,0) looses ~ 5 GeV. 
100 GeV quark looses 

8 GeV
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Quantifying the 
parton energy loss, fixed cF

Quark with pT=40 GeV 
(pT,0) looses ~ 5 GeV. 
100 GeV quark looses 

8 GeV

Effective 
power ~ 0.55

Energy loss does not extrapolate 
to zero. Hot medium even in 

peripheral? Some other physics? 
(nPDFs?, limits of Glauber?, …) 

Linear dependence 
of s' on Npart

Fixed to 9/4
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Quantifying the 
parton energy loss, free cF

Use rapidity differential jet RAA measurement to perform a 
multidimensional fit and extract a, s' and cF simultaneously 
(Input: NLO spectra – POWHEG+PYTHIA8 + 3 variations of PDFs)

Vacuum value of cF measured 
and evaluated in pQCD (MLLA 
calculations)

In vacuum, cF = 1.7-1.8 for 
Q=20-100 GeV

In-medium: cF = 1.78±0.12 –  
consistent with the value in the 
vacuum (Useful discussion on 
cF also in arXiv:1812.06019)
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Quantifying the 
parton energy loss

Use rapidity differential jet RAA measurement to perform a 
multidimensional fit and extract a, s' and cF simultaneously 
(Input: NLO spectra – POWHEG+PYTHIA8 + 3 variations of PDFs)

Full result:

 

Average jet quenching encapsulated in 4 parameters.
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5.02 TeV versus 2.76 TeV

Same jet RAA … but that does not imply same energy loss.

Spectra shape and flavor admixture are different 
=> energy loss must be different.

About 10% larger energy loss at 5.02 TeV compared to 2.76 TeV.
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Note
… jet RAA … as a result of different energy loss of quark- and
gluon-initiated jets 

Alternative: shower shape – wide jets lose more than narrow.

How to distinguish? 

Do as many comparisons with data as possible (in the kinematic 
region insensitive to in-cone radiation / recoil effects). Here:

– Rapidity dependence of the RAA, 

– Behavior of the RAA in the forward region,

– Jet fragmentation,

– Jet shapes.

More info in the backup: charged particle RAA, b-jet RAA, zg, high-pT 
charmonia, … and more to come 

Do as many comparisons as possible … and look for a failure
(by seeing a failure of the model one can learn new stuff)
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Predictions for the forward region

–> The jet RAA should decrease in the forward region
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Measurement in
 the forward region

–> The jet RAA does decrease in the forward region

PLB 790 (2019) 108 
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Modification of 
longitudinal structure of jet

(fragmentation function)

PRC 98 (2018) 024908
EPJC 77 (2017) 379
PRC 90 (2014) 024908
…  
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Modifications of
fragmentation functions
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Modifications of
fragmentation functions

–> Subtract the energy from the jet / initial parton and
 then let it fragment as in the vacuum
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Modifications of
fragmentation functions

–> Subtract the energy from the jet / initial parton and 
then let it fragment as in the vacuum

(Ratio of fragmentation functions)



 31

Modifications of
fragmentation functions

–> Subtract the energy from the jet / initial parton and 
then let it fragment as in the vacuum

–> Structure seen at 
intermediate and high-z is due 
to the difference in quenching of 
quark and gluon initiated jets

–> Speaks in favor of presence 
of color coherence effects in the 
data 

Some level of disagreement? 
Will get back to it ...

Excess of low-z not due to flavor 
effects (due to in-cone radiation 

or recoil effects)
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Transverse structure of jet
(jet shape)

ATLAS-CONF-2018-010, JHEP 05 (2018) 006
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Modification of the jet shape

–> Subtract the energy from the jet / initial parton and
then let it fragment as in the vacuum



 34

Modification of the jet shape

r<0.05: values well reproduced 
(for all pT

ch bins)

r>0.05: trends similar but 
magnitude very different …
... two particular possibilities:
 

1) Input spectra are not well 
modeled (sub-dominant 
contributions to jet pT)

2) Coherent picture breaks for 
~100 GeV jets at r~0.05

126 < pT,jet < 158 GeV
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Modification of the jet shape

r<0.05: values well reproduced 
(for all pT

ch bins)

r>0.05: trends similar but 
magnitude very different …
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1) Input spectra are not well 
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Modifications of fragmentation 
functions – a detail

Excess of low-z not due to flavor 
effects (due to in-cone radiation 

or recoil effects)

These low-z hadrons contribute to 
the measured jet energy. Para-
meter s' contains this soft part.

Soft part contributes to the measured 
fragmentation via denominator of z.
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Modifications of fragmentation 
functions – a detail

Excess of low-z not due to flavor 
effects (due to in-cone radiation 

or recoil effects)

These low-z hadrons contribute to 
the measured jet energy. Para-
meter s' contains this soft part.

Soft part contributes to the measured 
fragmentation via denominator of z.

Contribution of soft hadrons to 
the jet energy can be estimated 
from the measurement at low-z 

=> fragmentation distributions w/ 
correct soft contribution

ATLAS 0-10%
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Modifications of fragmentation 
functions – a detail

–> Prediction: detailed
measurement of fragmentation
at the highest-z (or lowest-x)
should exhibit a depletion ATLAS 0-10%
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Modifications of fragmentation 
functions – a detail

–> Prediction: detailed
measurement of fragmentation
at the highest-z (or lowest-x)
should exhibit a depletion ATLAS 0-10%

Seems observed 
in the data
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Example of other observables: 
non-groomed jet mass

A hint of possible shift to 
lower jet mass values seen in 

the data
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Example of other observables: 
non-groomed jet mass

A hint of possible shift to 
lower jet mass values seen in 

the data

… but rather complicated observable: 
significant flavor dependence + 
dependence on recoil at low-pT
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What about other objects?

Data tell us that the medium largely sees a jet as one object
 => what about other objects with a structure that are suppressed?

CMS Preliminary

ATLAS 0-10%
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What about other objects?

Data tell us that the medium largely sees a jet as one object
 => what about other objects with a structure that are suppressed?

J/Y  &  Y(2S)
… check the differences between the suppression of jets and

charmonia at high-pT (at the LHC at mid-rapidity)

Input:

– Measured pp spectra of charmonia (cannot rely 
on out of the box PYTHIA or other generator)

– Energy loss extracted from jets
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Charmonia
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Charmonia

 … suppression of both charmonia at pT>6.5 GeV is similar to the 
suppression of light quark jets
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Summary
Flavor dependence of the jet quenching seems to drive quite
a lot of what we see in the data.

Average jet quenching can be quantified from the data as follows:

Coherence effects seem to be important, but for jets with pt~100 GeV they 
seem to break at r~0.05. 

Recoil (or in-cone radiation) can modify kinematic regions where one would 
not expect that (e.g. high-z fragmentation).

Precision is really needed: 

– precision data are needed to understand details (recoil via high-z 
fragmentation, jet shapes at low r; flavor via V-jets). 

– precision MC is needed to have the reference under the control.
Suppression of charmonia at pT>6.5 GeV at midrapidity behaves like the 
suppression of light quark jets.
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Slides with more 
information
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5.02 TeV versus 2.76 TeV

Same jet RAA … but that does not imply same energy loss.
Spectra shape and flavor admixture are different 
=> energy loss must be different.
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5.02 TeV versus 2.76 TeV

Same jet RAA … but that does not imply same energy loss.
Spectra shape and flavor admixture are different 
=> energy loss must be different.

About 10% larger energy loss at 5.02 TeV compared to 2.76 TeV.
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Groomed zg … checking the 
impact of jet flavor

Using PYTHIA: 
zg does not depend much 

on the flavor or jet pT
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Groomed zg … checking the 
impact of jet flavor

Same procedure as for modeling 
fragmentation functions => no 

modification seen => measured 
modification not due to a flavor
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Modifications of fragmentation 
functions
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From jet internal structure to 
charged particle RAA

Each particle of a given pT must be in a jet of the same or higher pT

=> Charged particle RAA (at high-pT) = convolution of flavor dependent 
jet suppression and fragmentation functions
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From jet internal structure to 
charged particle RAA
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Jets at RHIC versus LHC

Jets very different between LHC 
and RHIC

Jet spectra for a given flavor 
more steep at RHIC

Flavor composition also different

–> Will impact charged 
particle RAA

–> Apply the effective quenching
factors extracted at the LHC
to RHIC jets
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b-jets suppression

b-jet RAA … comparable with 
inclusive jet RAA … but again, 
spectral shapes are different

Moreover, just one flavor => 
direct comparison misleading
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b-jets suppression

b-jet RAA … comparable with 
inclusive jet RAA … but again, 
spectral shapes are different

Moreover, just one flavor => 
direct comparison misleading

Use the model + b-jet cross-
section measurement to 
quantify the difference between 
inclusive jets and b-jets.

Results of minimization wrt to 
(statistically limited) data + 
including role of gluon splitting:
b-jets are suppressed by 
1.5±0.4 more than light quark 
jets.
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Charged particle RAA 
RHIC vs LHC

Underlying jet spectra very 
different between RHIC and 
LHC

Effective quenching factors 
from LHC applied to RHIC 
parton/jet spectra

Same quenching leads to 
smaller RAA in the case of 
RHIC

=> Initial parton spectra and 
flavor composition are very 
important for the extraction of 
the size of jet quenching 
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Dijet asymmetry

–> The subleading jet in the 
maximum of the xJ is 
suppressed by a factor of ~3 
larger than the leading jet

–> The subleading jet is 
quenched very differently then 
the leading jet –> quantify
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Unused slides,
technical details
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Modifications of fragmentation 
functions – prediction

… central rapidity – higher
yields at high-z (but not by much)
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Modifications of fragmentation 
functions – prediction

… central rapidity – higher
yields at high-z (but not by much)
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Start: Two basic questions

Why do have the jet and charge particle 
RAA almost no rapidity dependence 
given quite different input parton spectra 
and flavor composition at different
rapidities?

What is responsible for 
the enhancement (= not suppression)
at high z seen in the fragmentation?
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Start: Two basic questions

Why do have the jet and charge particle 
RAA almost no rapidity dependence 
given quite different input parton spectra 
and flavor composition at different
rapidities?

What is responsible for 
the enhancement (= not suppression)
at high z seen in the fragmentation?

–> Use a simple model with minimal 
assumptions on the quenching 
physics to extract basic properties
of the jet quenching
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Dijet asymmetry
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Dijet asymmetry

Source ??
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Dijet asymmetry

Test the role of path-length dependence
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Dijet asymmetry

Test the role of path-length dependence

Glauber IC



 73

Dijet asymmetry

Test the role of path-length dependence

Path-length or fluctuations in IC have 
no major impact (similar conclusions in 

EPJC 76 (2016) no.5, 288)
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Dijet asymmetry

Test the role of flavor

Peaking in the 
configurations when the 
loss of quark jets is more 
non-linear than the loss of 

gluon jets
 

… contra-intuitive
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Flavor fractions and fit parameters
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D(z) parameterization
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RAA – full analytic expression
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Minimization in (I.)

10-20% 60-70%
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Modifications of fragmentation 
functions – a detail

How is the soft excess estimated:

Measured 
(at least partially)
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Charmonia in p+Pb
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Feed down

ATLAS, JHEP 07 (2014) 154
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ATLAS, JHEP 07 (2014) 154



 83

Introduction

Two paths:
Be as realistic as one can:

– MC generators 

– JETSCAPE Collaboration

– theory calculations of parton enegy loss

Be simple and try to identify what plays a major role for a given 
observable (e.g. flavor, coherence, path length, fluctuations, …):

– theory calculations of parton enegy loss

– parametric modeling of parton energy loss



Phys.Lett B767 
(2017) 10

Eur.Phys.J. C76 
(2016) no.2, 50

arXiv:1702.01931

Phys.Rev. Lett. 119 
(2017) 062302

JEWEL
(jewel.hepforge.org)

QPythia
(igfae.usc.es/qatmc)

Martini
(PRC 80 (2009) 054913)

The Jet Energy-loss Tomography with a Statistically and Computationally 
Advanced Program Envelope (goal provide modular software which includes: 
modeling of initial state + dynamical evolution of QGP + jet energy loss 
+ advanced statistical tools; http://jetscape.wayne.edu/ )

http://jetscape.wayne.edu/

