JLab measurement of the ratio of the nucleon structure functions, F_2^n/F_2^p , from electron DIS off ³H and ³He at large Bjorken x (MARATHON Experiment) *

Tong Su Kent State University

8th International Conference on New Frontiers in Physics, Kolymbari, August 27th, 2019

Deep Inelastic Scattering and Quark Parton Model

• Deep Inelastic Scattering:

$$\frac{d\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4(\frac{\theta}{2})} \left[\frac{F_2(v, Q^2)}{v} \cos^2(\frac{\theta}{2}) + \frac{2F_1(v, Q^2)}{M} \sin^2(\frac{\theta}{2}) \right]$$

$$R = \frac{\sigma_L}{\sigma_T} = \frac{F_2 M}{F_1 v} \left(1 + \frac{v^2}{Q^2} \right) - 1$$

$$Q^2 = 4EE' \sin^2(\theta/2)$$

• Quark-Parton Model (QPM) interpretation in terms of quark probability distributions $q_i(x)$ (large Q^2 and v):

$$F_1(x) = \frac{1}{2} \Sigma e_i^2 q_i(x) \qquad F_2(x) = x_i \Sigma e_i^2 q_i(x)$$

• Bjorken x: fraction of nucleon momentum carried by struck quark:

$$x = Q^2 / 2Mv$$

F_2^n/F_2^p and d/u

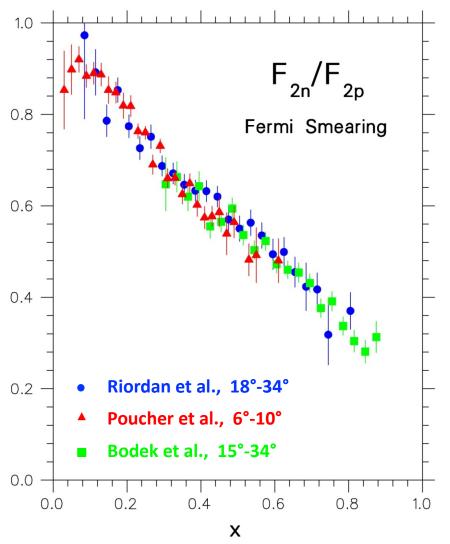
Assume isospin symmetry

$$u^{p}(x) = d^{n}(x) \equiv u(x)$$
 $\bar{u}^{p}(x) = \bar{d}^{n}(x) \equiv \bar{u}(x)$
 $u^{n}(x) = d^{p}(x) \equiv d(x)$ $\bar{d}^{p}(x) = \bar{u}^{n}(x) \equiv \bar{d}(x)$
 $s^{n}(x) = s^{p}(x) \equiv s(x)$ $\bar{s}^{p}(x) = \bar{s}^{n}(x) \equiv \bar{s}(x)$

Proton and neutron structure functions:

$$F_2^p = x \left[\frac{4}{9} (u + \overline{u}) + \frac{1}{9} (d + \overline{d}) + \frac{1}{9} (s + \overline{s}) \right]$$

$$F_2^n = x \left[\frac{4}{9} (d + \overline{d}) + \frac{1}{9} (u + \overline{u}) + \frac{1}{9} (s + \overline{s}) \right]$$


Nachtmann inequality

$$1/4 \le F_2^n/F_2^p \le 4$$

Early SLAC data

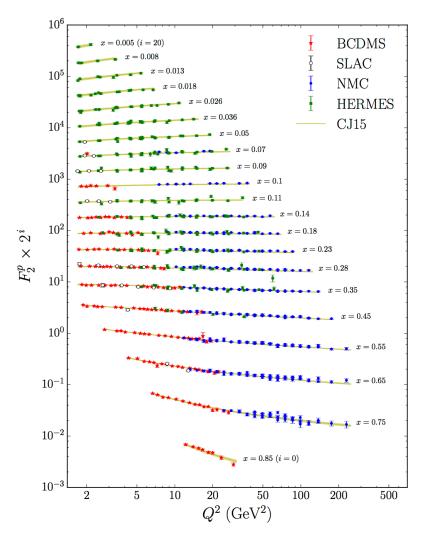
SLAC, End Station A

- SLAC Measurements, End Station A,1968-1972
- F_2^n/F_2^p extracted from proton and deuterium deep inelastic data using Hamada-Johnston potential in a Fermi-smearing model.

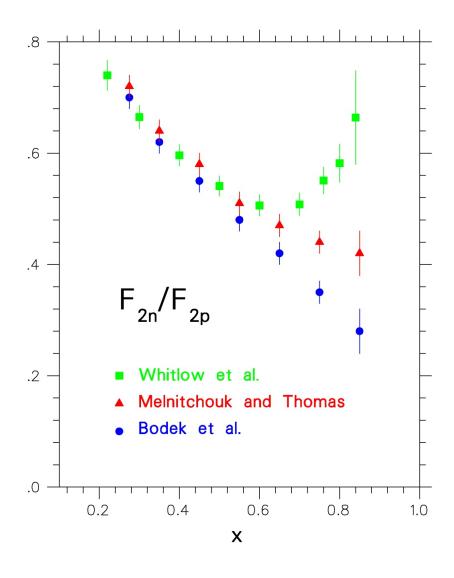
SLAC/CERN Data Interpretation in QPM

- Nachtmann inequality satisfied
- For $x \to 0: F_2^n/F_2^p \to 1:$ Sea quarks dominate with:

$$u + \overline{u} = d + \overline{d} = s + \overline{s}$$

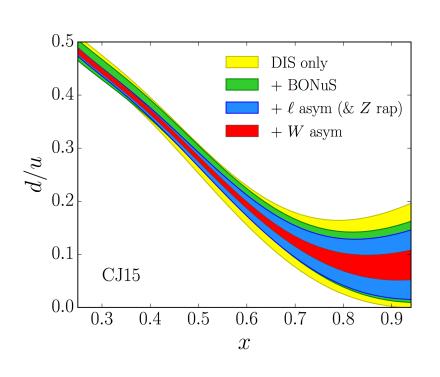

• For $x \to 1: F_2^n/F_2^p \to 1/4$: High momentum parton in proton (neutron) are up (down) quarks, and:

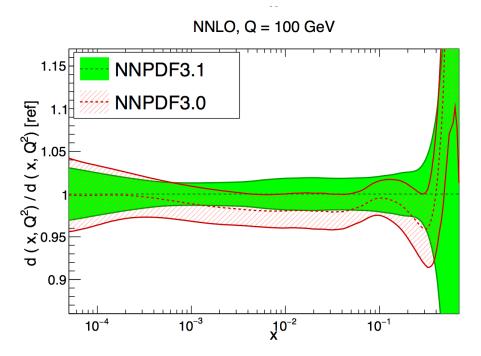
$$s + \overline{s} = 0$$


• For medium and high x, safe to assume that (with d and u denoting now quark plus antiquark distributions):

$$\frac{F_2^n}{F_2^p} = \frac{[1+4(d/u)]}{[4+(d/u)]}$$

Half a century later




• F_2^p has been precisely measured

- F_2^n not well known at large x
- Data inconclusive due to uncertainties in deuterium nuclear corrections

F_2^n uncertains translates directly to uncertainty on d/u, d(x)...

A. Accardi, L.T. Brady, W.
 Melnitchouk, J.F. Owens, N. Sato
 Phys. Rev. D 93 114017 (2016)

 NNPDF Collaboration (Ball, Richard D. et al.) Eur. Phys. J. C77 (2017) no.10, 663

F_2^n/F_2^p from Theory

 F_2^n/F_2^p , d/u ratios and A_1 for $x \rightarrow 1$

	F ₂ ⁿ /F ₂ ^p	d/u	A_1^n	A_1^p
SU(6)	2/3	1/2	0	5/9
Diquark/Feynman	1/4	0	1	1
Quark Model/Isgur	1/4	0	1	1
Perturbative QCD	3/7	1/5	1	1
QCD Counting Rules	3/7	1/5	1	1

* R. J. Holt and C. D. Roberts, Rev. Mod. Phys. 82, 2991 (2010).

Extract F_2^n/F_2^p from A=3 nuclei

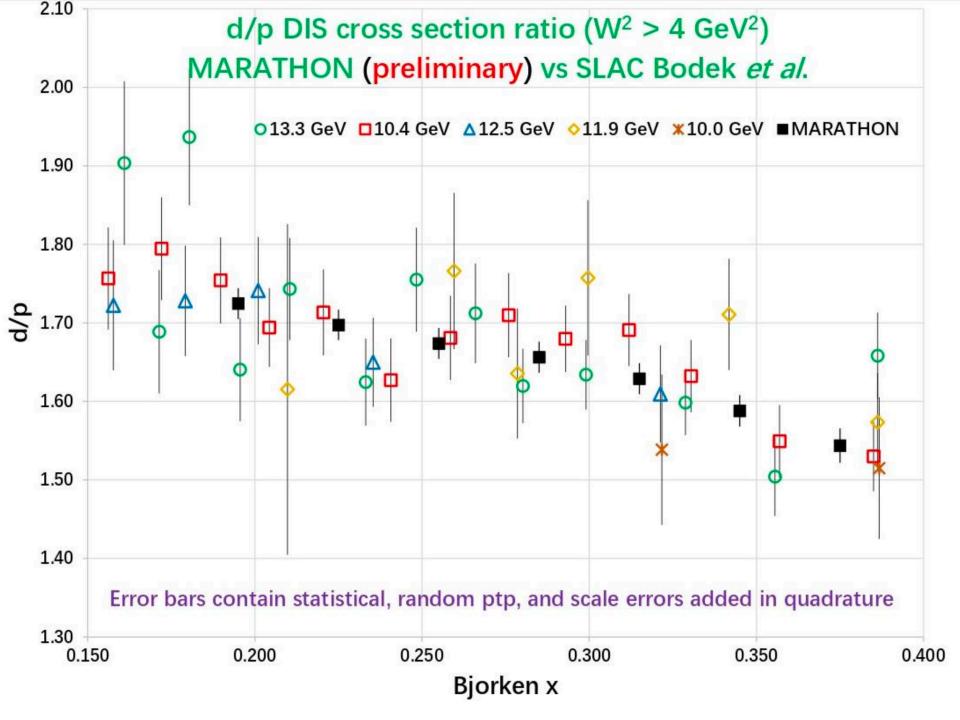
- Instead of dealing with the nuclear correction in deuterium, MARATHON proposed a new way to extract F_2^n/F_2^p from Tritium and Helium-3 DIS data by taking advantage of the mirror symmetry of the A=3 nuclei
- Define the EMC type ratio:

$$R_{3H} = \frac{F_2^{3H}}{2F_2^n + F_2^p} \quad R_{3He} = \frac{F_2^{3He}}{F_2^n + 2F_2^p}$$

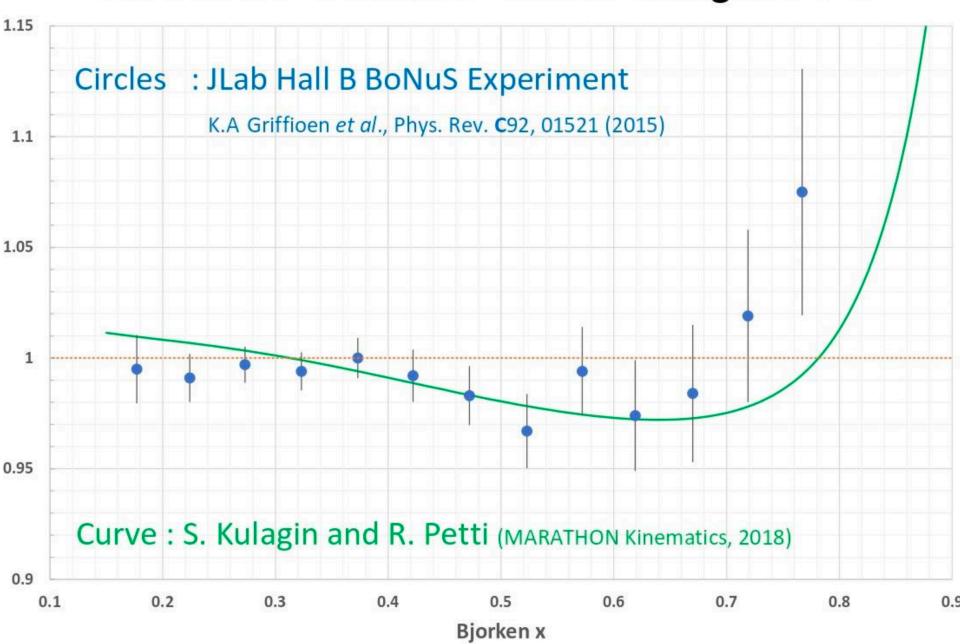
• Super Ratio:

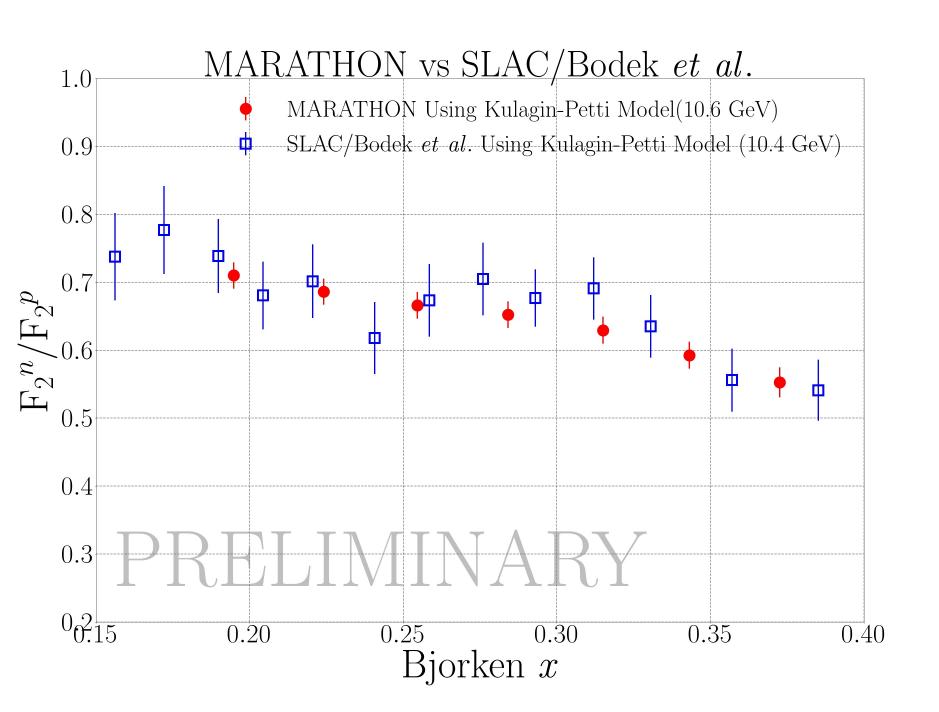
$$\mathfrak{R} = \frac{R_{3He}}{R_{3H}}$$

• Solve for the nucleon F_2 ratio and calculate R^* (expected to be very close to unity) using a theory model:


$$\frac{F_2^n}{F_2^p} = \frac{2\Re - F_2^{3He}/F_2^{3H}}{2(F_2^{3He}/F_2^{3H}) - \Re}$$

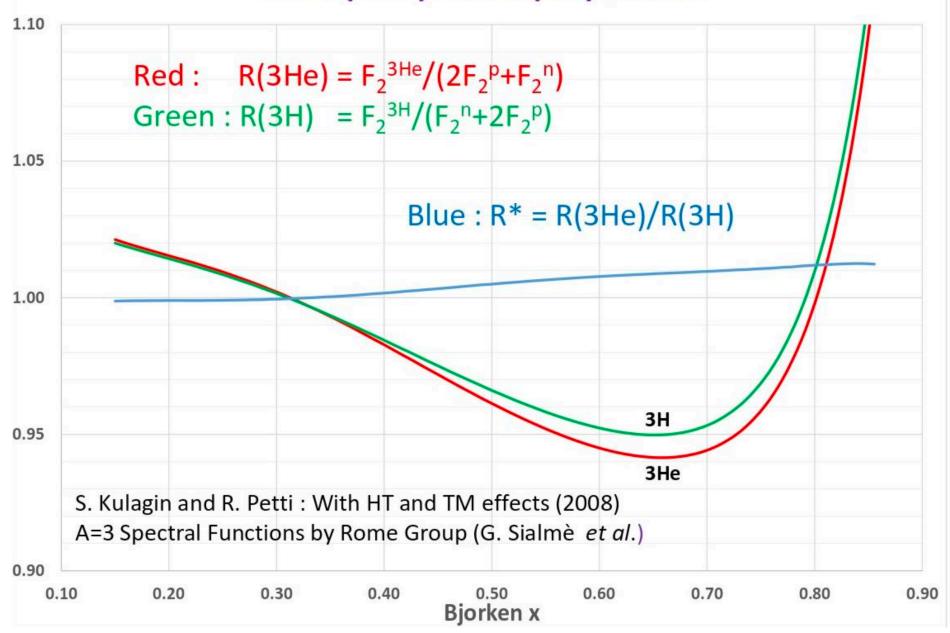
The JLab MARATHON Experiment

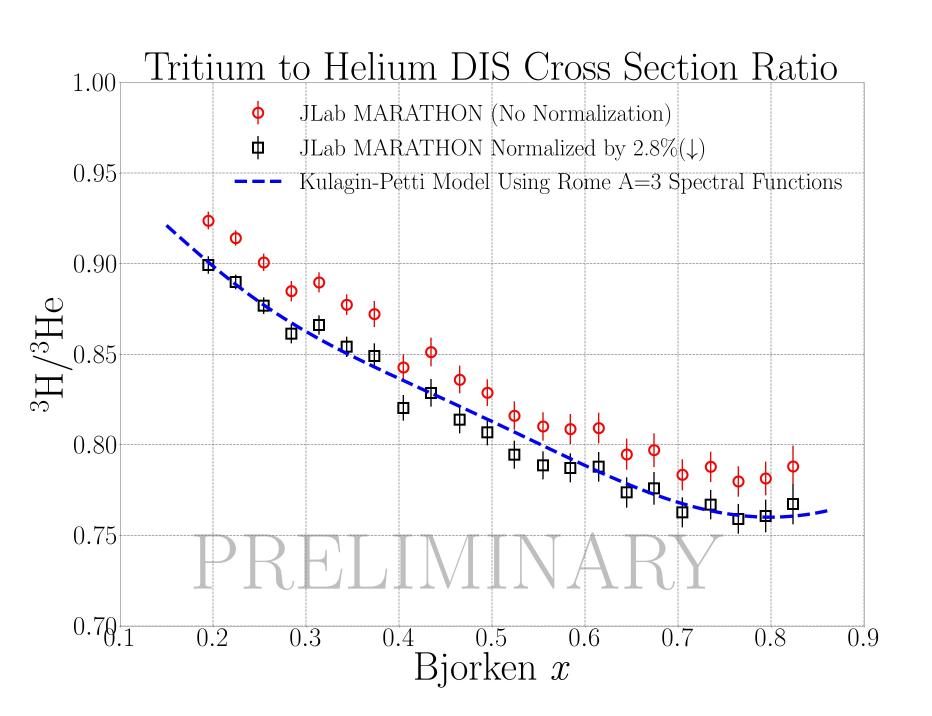

- MARATHON took data in the period January-April, 2018 at Jefferson Lab.
- It used the 2 High Resolution Spectrometers (HRS) of Hall A and a cryogenic high pressure gas target system of 3H, 3He, 2H, and 1H (25 cm long cells of 1.25 cm diameter).
- It used a 10.6 GeV electron beam with 20μ A beam current.
- The electron scattering angle varied between 17 and 36 deg.
- The scattered electron momentum was fixed at 3.1 GeV/c for the Left-HRS and at 2.9 GeV/c for the Right-HRS.

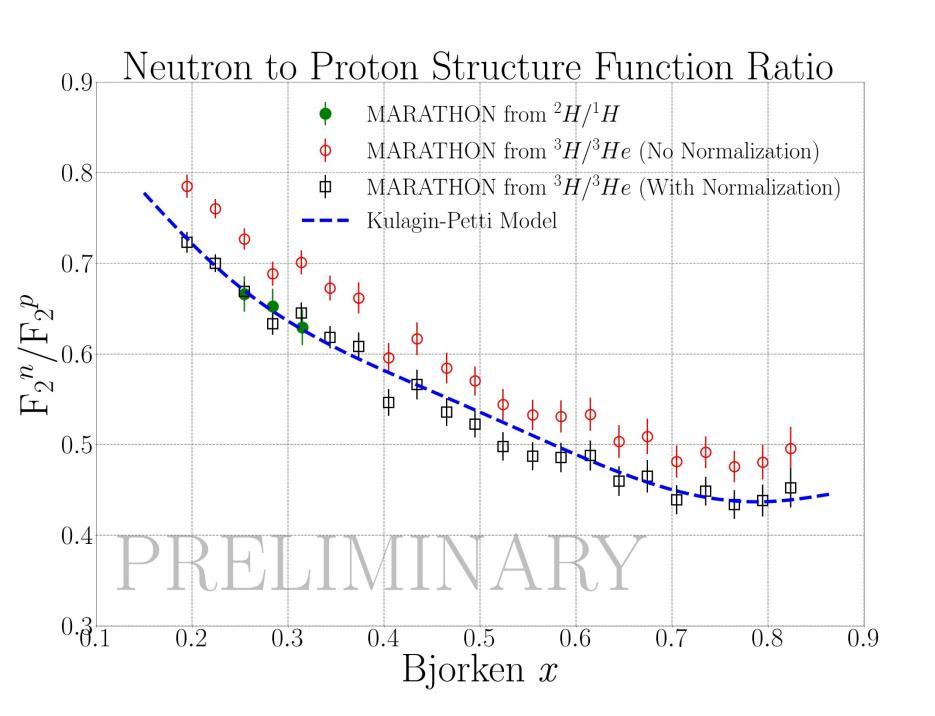

MARATHON ²H/¹H DIS Calibration Data

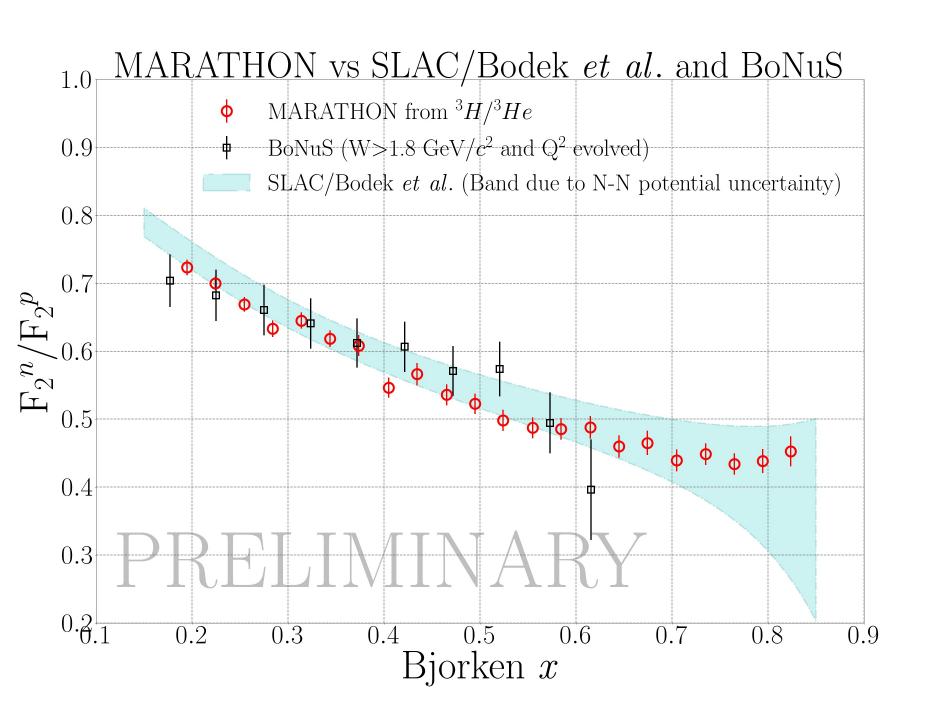
- MARATHON measured the ratio of d/p DIS yield at low Bjorken x values with *high precision*. The *accuracy* of the d/p results is essentially dominated by the gas target uncertainties.
- The d/p ratio data, are in excellent agreement with the SLAC benchmark data, taken at similar kinematics, by the SLAC/MIT Nobel prize winning group, with the 8 GeV/c Spectrometer.
- The MARATHON F_2^n/F_2^p calibration values have been determined from the 1H and 2H data using the standard formula $F_2^n/F_2^p = [(F_2^d/F_2^p)/R^*] 1$, where R^* is the deuteron EMC-type ratio $R^* = F_2^d/[F_2^p + F_2^n]$, calculated from a theoretical model by S. Kulagin and R. Petti, which is, at low x, in very good agreement with data extracted from the JLab BoNuS experiment.
- The d/p F_2^n/F_2^p values in the vicinity of x=0.3 have been used to normalize the F_2^n/F_2^p obtained from the $^3H/^3He$ ratio data.

EMC Effect - Deuteron - BoNuS -Kulagin&Petti






MARATHON ³H/³He DIS Data


- The super-ratio R^* model for 3H and 3H e that was used (among several available models) was developed, for the actual MARATHON kinematics, by Kulagin and Petti in the summer of 2018, using the A=3 spectral functions by the Rome group (E. Pace, G. Salmè *et al.*).
- F_2^n/F_2^p as calculated from the measured ${}^3H/{}^3He$ ratio was compared to F_2^n/F_2^p as calculated from the measured d/p MARATHON ratio. In order to match the values of the two measurements in the vicinity of x=0.3, the ${}^3H/{}^3He$ ratio must be scaled down (normalized) by 2.8%.
- Note that the MARATHON measured values and the Kulagin-Petti F_2^n/F_2^p predicted values are in excellent agreement!

The R(3He) and R(3H) Ratios

Summary

- The MARATHON d/p DIS measurements agree very well with the seminal SLAC Bodek *et al.* measurements and provide an excellent normalization for the 3H/3He DIS data.
- MARATHON has provided high quality F_2^n/F_2^p data at medium and large values of Bjorken x that are free of the deuteron structure uncertainties present in the SLAC data from d/p DIS.
- There is no need to iterate the F_2^n/F_2^p extraction process, as the Kulagin and Petti input model agrees very well with the data!
- Next to be done is the extraction of LT (Leading Twist) F_2^n/F_2^p in order to determine the d/u ratio... Stay tuned ...!
- Note: MARATHON has provided for the 1st time data for the EMC effect of ³H, and new large-x and large- W^2 data for the EMC effect of ³He. The isoscalarity correction factor uses the MARATHON F_2^n/F_2^p (following talks by M.Nycz and T.Hague).

The JLab MARATHON Tritium Collaboration

D. Abrams, H. Albataineh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, T. Averett, C. Ayerbe Gayoso, X. Bai, J. Bane*, S. Barcus, A. Beck, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, D. Blyth, W. Boeglin, D. Bulumulla, A. Camsonne, M. Carmignotto, J. Castellanos, J-P. Chen, C. Ciofi degli Atti, E. O. Cohen, S. Covrig, K. Craycraft, R. Cruz-Torres, B. Dongwi, M. Duer, B. Duran, D. Dutta, N. Fomin, E. Fuchey, C. Gal, T. N. Gautam, S. Gilad, K. Gnanvo, T. Gogami, J. Gomez, C. Gu, A. Habarakada, T. Hague*, O. Hansen, M. Hattawy, F. Hauenstein, O. Hen, D. W. Higinbotham, R. Holt, E. Hughes, C. Hyde, H. Ibrahim, S. Jian, S. Joosten, A. Karki, B. Karki, A. T. Katramatou, C. Keppel, M. Khachatryan, V. Khachatryan, A. Khanal, D. King, P. King, I. Korover, S. A. Kulagin, T. Kutz*, N. Lashley-Colthirst, G. Laskaris, S. Li, W. Li, H. Liu*, S. Liuti, N. Liyanage, D. Lonardoni, R. Machleidt, L.E. Marcucci, P. Markowitz, E. McClellan, D. Meekins, W. Melnitchouk, S. Mey-Tal Beck, Z-E. Meziani, R. Michaels, M. Mihovilovič, V. Nelyubin, D. Nguyen, N. Nuruzzaman, M. Nycz*, R. Obrecht, M. Olson, L. Ou, V. Owen, E. Pace, B. Pandey, V. Pandey, A. Papadopoulou, M. Paolone, S. Park, M. Patsyuk, S. Paul, G. G. Petratos, R. Petti, E. Piasetzky, R. Pomatsalyuk, S. Premathilake, A. J. R. Puckett, V. Punjabi, R. Ransome, M. N. H. Rashad, P. E. Reimer, S. Riordan, J. Roche, F. Sammarruca, G. Salmè, N. Santiesteban, B. Sawatzky, J. Segal, E. P. Segarra, B. Schmookler, A. Schmidt, S. Scopetta, A. Shahinyan, S. Širca, N. Sparveris, T. Su*, R. Suleiman, H. Szumila-Vance, A. S. Tadepalli, L. Tang, W. Tireman, F. Tortorici, G. Urciuoli, M. Viviani, L. B. Weinstein, B. Wojtsekhowski, S. Wood, Z. H. Ye, Z. Y. Ye, and J. Zhang.

More than 140 Collaborators

Red-Boldfaced Names: Tritium Program grad students; starred: MARATHON Ph.D. students Blue-Boldfaced Names: Tritium Program postdoctoral associates

Thanks

- Thanks to all fellow graduate students and postdocs for their hard work and dedication in preparing, running and analyzing the experiment.
- Thanks to the Accelerator and Hall A Scientific and Technical Staff of JLab, and the Lab Management for their outstanding support of the MARATHON project.
- Special thanks to Roy Holt and David Meekins for making a reality, for (only) the third time in the US, a tritium target for electronuclear physics.
- Special thanks to Doug Higinbotham for managing the Tritium Program.
- Thanks to all theory colleagues who embraced the experiment since its inception and contributed to the development of the proposal and to the analysis of the experimental data.

Thanks!