

JAVIER CARAVACA (SNO+ COLLABORATION)

ICNFP Crete - August 19

SNO+ IS A MULTIPURPOSE EXPERIMENT

NUCLEON DECAY

SOLAR NEUTRINOS

MAIN GOAL: Ovßß

GEO & REACTOR NEUTRINOS

SUPERNOVA NEUTRINOS

EXOTIC AND OTHER PHYSICS

SNO+ IS A MULTIPURPOSE EXPERIMENT

NUCLEON DECAY

SOLAR NEUTRINOS

IN THIS TALK:

The SNO+ detector Results from water phase: Invisible nucleon decay searches B8 solar neutrino flux measurement External background measurements

MAIN GOAL: Ovßß

GEO & REACTOR NEUTRINOS

SUPERNOVA NEUTRINOS

EXOTIC AND OTHER PHYSICS

Prospects of SNO+:
Ονββ predicted sensitivity
Precise solar neutrino measurements
Detector status

SNO+ APPARATUS

~9500 PMTs (54% optical coverage)

Clean room class 2000

~2km depth (~6km.w.e)

~3 muons/hour

6m-radius, 10cm-thick UVT acrylic vessel

Ultra-pure water

SNO+ TIMELINE

SOLAR NEUTRINOS

NUCLEON DECAY

0vββ milestone: measure external backgrounds

May 2017 → Water phase started

2017

Dec. 2016 Started taking commissioning data

2016

WATER PHASE

~900 tonnes of water

Co .

SNO+ MFIINE

SOLAR NEUTRINOS

NUCLEON DECAY

0vββ milestone: measure external backgrounds

May 2017 → Water phase started

2017

Dec. 2016 Started taking commissioning data

2016

WATER PHASE

2019

PARTIAL PHASE

We are

here

Started filling with scintillator

2019 → Scintillator fill starts

1, 1

...

SNO+ IMFI INF

SOLAR NEUTRINOS

NUCLEON DECAY

0vββ milestone: measure external backgrounds

May 2017 → Water phase started

2017

Dec. 2016 Started taking commissioning data

2016

WATER PHASE We are here 2019 → Scintillator

> PARTIAL PHASE

2019

~780 tonnes of LABPPO scintillator

SOLAR NEUTRINOS

GEO & REACTOR NEUTRINOS

0vββ milestone: measure internal backgrounds

fill starts

SCINTILLATOR PHASE

...

SNO+ TIMELINE

~780 tonnes of LABPPO scintillator + ~4 tonnes natural tellurium (34% ¹³⁰Te)

SOLAR NEUTRINOS

NUCLEON DECAY

0vββ milestone: measure external backgrounds

May 2017 → Water phase started

2017

Dec. 2016 Started taking commissioning data

2016

WATER PHASE PARTIAL Phase

2019

We are

here

SOLAR NEUTRINOS

GEO & REACTOR NEUTRINOS

0vββ milestone: measure internal backgrounds

2019 → Scintillator

fill starts

AL

SCINTILLATOR Phase

~2020

...

TELLURIUM Phase

SNO+ CALIBRATION

Used calibration sources:

Diffused isotropic laser → Calibrate PMT gain, timing and water optics

1 51 51 9

11 1

in the second

.

SNO+ VALB

Used calibration sources:

- Diffused isotropic laser → Calibrate PMT gain, timing and water optics
- ¹⁶N → Calibrate energy scale and angular resolution

SNO+ Calibration

- Used calibration sources:
- Diffused isotropic laser \rightarrow Calibrate PMT gain, timing and water optics
- ¹⁶N → Calibrate energy scale and angular resolution
- Cherenkov source → Decouple optical microphysical parameters in scintillator and Te phase

1 11 11

SNO+ CALIBRATIO

- **Used calibration sources:**
- Diffused isotropic laser → Calibrate PMT gain, timing and water optics
- ¹⁶N → Calibrate energy scale and angular resolution
- Cherenkov source → Decouple optical microphysical parameters in scintillator and Te phase
- External LED/Laser system → Further calibrate PMT and optics. Reduce risk of contamination due to source deployment

External LED event

External laser event

NUCLEON DECAY SEARCHES

PHYS.REV. D 99, 032008 (2019)

SNO+ WATER PHASE IS SENSITIVE TO INVISIBLE (DI)NUCLEON DECAYS LIFETIMES OF ~10²⁹ YEARS

- SK has world-leading limits for **visible** nucleon decays
- Invisible nucleon decay
 (e.g. N→3v) yields de excitation gammas above
 radioactive backgrounds

$AX \rightarrow A^{-1}X^* + invisible particle$ $A^{-1}X^* \rightarrow A^{-1}X + Y's$

SNO+ WATER PHASE IS SENSITIVE TO

- SK has world-leading limits for **visible** nucleon decays
- **Invisible** nucleon decay (e.g. $N \rightarrow 3v$) yields deexcitation gammas above radioactive backgrounds
- We performed a model-independent search

SNO+ WATER PHASE IS SENSITIVE TO

- SK has world-leading limits for **visible** nucleon decays
- **Invisible** nucleon decay (e.g. $N \rightarrow 3v$) yields deexcitation gammas above radioactive backgrounds
- We performed a model-independent search

PERFORMED TWO INDEPENDENT ANALYSES: COUNTING ANALYSIS

"CUT&COUNT" APPROACH

	Data set	$T_e(MeV)$	R (mm)	z (m)	$\cos heta_{\odot}$
	1	5.75 - 9	$<\!5450$	<4.0	< 0.80
	2 (z>0)	5.95 - 9	$<\!4750$	> 0.0	< 0.75
	2 (z < 0)	5.45 - 9	$<\!5050$	< 0.0	< 0.75
	3	5.85 - 9	$<\!5300$	-	< 0.65
	4	5.95 - 9	$<\!5350$	> -4.0	< 0.70
	5	5.85 - 9	$<\!5550$	< 0.0	< 0.80
	6	6.35 - 9	$<\!5550$	-	< 0.70
Time bin s Dataset divided	5: d in 6				
different backg	round	Fidu	cial volu	me:	
periods		Red ba	luces exter ackground	nal s	/
	Energ Red radio backg	y cut: uces active rounds	S	un dire Reduces Itrino bac	ction: solar ckground

PERFORMED TWO INDEPENDENT ANALYSES: Counting Analysis

"CUT&COUNT" APPROACH

	Data set	$T_e(MeV)$	R (mm)	z (m)	$\cos heta_{\odot}$
	1	5.75 - 9	$<\!5450$	$<\!4.0$	< 0.80
	2 (z>0)	5.95 - 9	$<\!4750$	> 0.0	< 0.75
	2 (z < 0)	5.45 - 9	$<\!5050$	< 0.0	< 0.75
	3	5.85 - 9	$<\!5300$	-	< 0.65
	4	5.95 - 9	$<\!5350$	> -4.0	< 0.70
	5	5.85 - 9	$<\!5550$	< 0.0	< 0.80
	6	6.35 - 9	$<\!5550$	-	< 0.70
Time bins	5:				
Dataset divided	d in 6				
different backg	round	Fidu	cial volu	me:	
periods		Red	luces exter	nal	/
	_		ackground	S	
	Energ	ly cut:	S	un dire	ction:
	Red	uces		Reduces	solar
	backg	active rounds	neu	itrino bac	ckground
22	EVENTS S	SELECTED [17.65 +14.2	⁵ -3.00 EXP	ECTED]

PERFORMED TWO INDEPENDENT ANALYSES: SPECTRAL ANALYSIS COUNTING ANALYSIS "CUT&COUNT" APPROACH MULTI-DIMENSIONAL LIKELIHOOD FIT

	Data set	$T_e(MeV)$	R (mm)	z (m)	$\cos heta_{\odot}$
	1	5.75 - 9	$<\!5450$	$<\!4.0$	< 0.80
	2 (z > 0)	5.95 - 9	$<\!4750$	>0.0	< 0.75
	2 (z < 0)	5.45 - 9	$<\!5050$	< 0.0	< 0.75
	3	5.85 - 9	$<\!5300$	-	< 0.65
	4	5.95 - 9	$<\!5350$	> -4.0	< 0.70
	5	5.85 - 9	$<\!5550$	< 0.0	< 0.80
	6	6.35 - 9	$<\!5550$	-	< 0.70
Time bins Dataset divided	5: d in 6	Fidu	cial volu	mo.	
different backg	round	Red	uces exter	mal	
penous	_	b	ackground	S	
	Energ	y cut:	S	un dire	ction:
	Ked	uces		Reduces	solar
	backg	rounds	neu	ıtrino bad	ckground
22	EVENTS S	SELECTED [17.65 +14.2	⁵ -3.00 EXP	ECTED]

Observables:

- Energy
- Radial event position
- Sun direction
- Light isotropy
- Event direction

PERFORMED TWO INDEPENDENT ANALYSES: COUNTING ANALYSIS SPECTRAL ANALYSIS "CUT&COUNT" APPROACH MULTI-DIMENSIONAL LIKELIHOOD FIT

	Data set	$T_e(MeV)$	R (mm)	z (m)	$\cos heta_{\odot}$
	1	5.75 - 9	$<\!5450$	< 4.0	< 0.80
	2 (z > 0)	5.95 - 9	$<\!4750$	>0.0	< 0.75
	2 (z < 0)	5.45 - 9	$<\!5050$	< 0.0	< 0.75
	3	5.85 - 9	$<\!5300$	-	< 0.65
	4	5.95 - 9	$<\!5350$	> -4.0	< 0.70
	5	5.85 - 9	$<\!5550$	< 0.0	< 0.80
	6	6.35 - 9	$<\!5550$	-	< 0.70
Time bin Dataset divide different backg periods	s: d in 6 pround	Fidu Rec b	cial volu luces exter ackground	m e: mal	
	Energ Red radio backg	y cut: uces active rounds	S neu	un dire Reduces Itrino bac	ction: solar kground
2	2 EVENTS S	SELECTED [17.65 +14.2	⁵ -3.00 EXP	ECTED]

differe

Observables:

- Energy
- Radial event position
- Sun direction
- Light isotropy
- Event direction

PERFORMED TWO INDEPENDENT ANALYSES: SPECTRAL ANALYSIS COUNTING ANALYSIS "CUT&COUNT" APPROACH MULTI-DIMENSIONAL LIKELIHOOD FIT

	Data set	$T_e(MeV)$	R (mm)	z (m)	$\cos heta_{\odot}$
	1	5.75 - 9	$<\!5450$	$<\!\!4.0$	< 0.80
	2 (z > 0)	5.95 - 9	$<\!4750$	>0.0	< 0.75
	2 (z < 0)	5.45 - 9	$<\!5050$	< 0.0	< 0.75
	3	5.85 - 9	$<\!5300$	-	$<\!0.65$
	4	5.95 - 9	$<\!5350$	> -4.0	< 0.70
	5	5.85 - 9	$<\!5550$	< 0.0	< 0.80
	6	6.35 - 9	$<\!5550$	-	< 0.70
Time bin Dataset divide different backg periods	s: d in 6 ground	Fidu Rec b	cial volu luces exter ackground	m e: mal	
	Energ Red radio backg	Jy cut: uces active rounds	S neu	un dire Reduces Itrino bac	ction: solar kground
2	2 EVENTS S	SELECTED [17.65 +14.2	⁵ -3.00 EXP	ECTED]

differe

Observables:

- Energy
- Radial event position
- Sun direction
- Light isotropy
- Event direction

PERFORMED TWO INDEPENDENT ANALYSES: COUNTING ANALYSIS SPECTRAL ANALYSIS "CUT&COUNT" APPROACH MULTI-DIMENSIONAL LIKELIHOOD FIT

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{ c c c c c c c c }\hline 1 & 5.75-9 & <5450 & <4.0 & <0.80 \\ 2 & (z > 0) & 5.95-9 & <4750 & >0.0 & <0.75 \\ 2 & (z < 0) & 5.45-9 & <5050 & <0.0 & <0.75 \\ 3 & 5.85-9 & <5300 & - & <0.65 \\ 4 & 5.95-9 & <5350 & >-4.0 & <0.70 \\ 5 & 5.85-9 & <5550 & <0.0 & <0.80 \\ \hline 6 & 6.35-9 & <5550 & - & <0.70 \\ \hline \end{array}$		Data set	$T_e(MeV)$	R (mm)	z (m)	$\cos heta_{\odot}$
$\begin{array}{c ccccc} 2 & (z > 0) \\ 2 & (z < 0) \\ 3 & 5.45 - 9 & <5050 & <0.0 & <0.75 \\ 3 & 5.85 - 9 & <5300 & - & <0.65 \\ 4 & 5.95 - 9 & <5350 & > -4.0 & <0.70 \\ 5 & 5.85 - 9 & <5550 & <0.0 & <0.80 \\ 6 & 6.35 - 9 & <5550 & - & <0.70 \end{array}$		1	5.75 - 9	$<\!5450$	$<\!4.0$	< 0.80
$\begin{array}{c ccccc} 2 & (z < 0) \\ 3 & 5.45 - 9 & < 5050 & < 0.0 & < 0.75 \\ 3 & 5.85 - 9 & < 5300 & - & < 0.65 \\ 4 & 5.95 - 9 & < 5350 & > -4.0 & < 0.70 \\ 5 & 5.85 - 9 & < 5550 & < 0.0 & < 0.80 \\ \hline 6 & 6.35 - 9 & < 5550 & - & < 0.70 \\ \end{array}$		2 (z > 0)	5.95 - 9	$<\!4750$	>0.0	< 0.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 (z < 0)	5.45 - 9	$<\!5050$	< 0.0	< 0.75
$\begin{array}{c ccccc} 4 & 5.95-9 & <5350 & >-4.0 & <0.70 \\ 5 & 5.85-9 & <5550 & <0.0 & <0.80 \\ \hline 6 & 6.35-9 & <5550 & - & <0.70 \\ \hline \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	5.85 - 9	$<\!5300$	-	< 0.65
5 5.85–9 <5550		4	5.95 - 9	$<\!5350$	> -4.0	< 0.70
6 6.35–9 <5550		5	5.85 - 9	$<\!5550$	< 0.0	< 0.80
Time bins: Dataset divided in 6 different background periods Energy cut: Reduces radioactive Tiducial volume: Reduces external backgrounds Sun direction: Reduces solar		6	6.35 - 9	$<\!5550$	-	< 0.70
Energy cut: Reduces radioactive	Time bin Dataset divide different backg periods	s: d in 6 round	Fidu Red ba	cial volu luces exter ackground	m e: mal	
backgrounds neutrino background		Energ Red radio backg	y cut: uces active rounds	S neu	un dire Reduces Itrino bac	ction: solar kground

differe

Observables:

- Energy
- Radial event position
- Sun direction
- Light isotropy
- Event direction

UNCERTAINTY IN ENERGY RESOLUTION IS THE DOMINANT SYSTEMATIC

NO SIGNAL DETECTED \rightarrow SET 90% C.L. LIFETIME LIMITS PHYS.REV. D 99, 032008 (2019)

nting analysis	Existing limits
$.6 \times 10^{29} \text{ y}$	5.8×10^{29} y [Kamland]
$.4 \times 10^{29} \text{ y}$	$2.1 \times 10^{29} \text{ y [SNO]}$
$.1 \times 10^{28} \text{ y}$	5.0×10^{25} y [Borexino]
$.3 \times 10^{28} { m y}$	$2.1 \times 10^{25} \text{ y [*]}$
$.6 \times 10^{28} \text{ y}$	$1.4 \times 10^{30} \text{ y} [\text{Kamland}]$

235 days-worth of data \rightarrow currently x2 data available [new analysis in preparation]

[*] V. Tretyak, V. Yu. Denisov, and Yu. G. Zdesenko, JETP Lett. **79**, 106 (2004), [Pisma Zh. Eksp. Teor. Fiz.79,136(2004)], arXiv:nucl-ex/0401022 [nucl-ex].

SOLAR NEUTRINOS IN WATER

PHYS.REV. D 99, 012012 (2019)

MEASURED SOLAR B8 FLUX \rightarrow COMPATIBLE WITH PREVIOUS MEASUREMENTS

VERY LOW BACKGROUNDS → SOLAR NEUTRINOS PEAK CLEARLY VISIBLE

PHYS.REV. D 99, 012012 (2019)

EXTERNAL BACKGROUNDS MEASUREMENTS

EXTERNAL BACKGROUNDS ARE COMPATIBLE WITH EXPECTATIONS

GAMMA BACKGROUND FROM PMTs

EXTERNAL BACKGROUNDS ARE COMPATIBLE WITH EXPECTATIONS

GAMMA BACKGROUND FROM PMTs

GAMMA BACKGROUND FROM WATER BUFFER AV AND ROPES

EXTERNAL BACKGROUNDS ARE COMPATIBLE WITH EXPECTATIONS

GAMMA BACKGROUND FROM PMTs

GAMMA BACKGROUND FROM WATER BUFFER AV AND ROPES

Ovββ WITH TELLURIUM-130 IN LABPPO

- 1) Long 2vββ lifetime
- 2) Q value ~ 2.5MeV
- 3) 34% natural abundance
- 4) Phase space around average

Ovββ WITH TELLURIUM-130 IN LABPPO

- 1) Long 2vββ lifetime
- 2) Q value ~ 2.5MeV
- 3) 34% natural abundance
- 4) Phase space around average

- 1) High light yield ~10000ph/MeV
- 2) Long attenuation length (~20m)
- 3) a/e pulse shape discrimination

Ovββ WITH TELLURIUM-130 IN LABPPO

- 1) Long $2v\beta\beta$ lifetime
- 2) Q value ~ 2.5MeV
- 3) 34% natural abundance
- 4) Phase space around average

- 1) High light yield ~10000ph/MeV
- 2) Long attenuation length (~20m)
- 3) a/e pulse shape discrimination

Use DDA to stabilize mixture

COCKTAIL LOADED AT 0.5% NATURAL TELLURIUM →

~400 PE/MeV \rightarrow ~3% ENERGY RESOLUTION @2MeV

EXPECTED BACKGROUND

Fiducial volume = 3.3m radius ROI: 2.42 - 2.56 MeV [-0.5 σ - 1.5 σ] Counts/Year: 9.47

ASSUMING: $\sim 10^{-15}$ g/g OF U $\sim 10^{-16}$ g/g OF Th

Internal Th chain

SENSITIVITY

SNO+ 5 YEARS: $T_{1/2} > 2.1 \text{ x } 10^{26} \text{ YEARS}$ $37 \text{meV} < \text{m}\beta\beta < 89 \text{meV}$

Expected energy distribution with nominal backgrounds

0.001

10-4

0.1

SENSITIVITY

SNO+ 5 YEARS: $T_{1/2} > 2.1 \text{ x } 10^{26} \text{ YEARS}$ $37 \text{meV} < \text{m}\beta\beta < 89 \text{meV}$ SNO+ PHASE II: 1) **4**% TE 2) INCREASED LIGHT YIELD

Expected energy distribution with nominal backgrounds

0.001

10-4

0.1

SOLAR NEUTRINOS In Labor

SNO+ HAS POTENTIAL FOR PRECISE **SOLAR NEUTRINO MEASUREMENTS**

- Solar neutrino experiment with lowest levels of ¹¹C
- Favorable scenario for precise PEP measurement and first **CNO** measurement
- Sensitivity highly depends on ²¹⁰Bi background level

DETECTOR STATUS

- Nitrogen cover gas installed → Currently registering the lowest external backgrounds since we started
- repairs in scintillator plant.

- Scintillator plant commissioning finished \rightarrow Filling vessel with scintillator and starting assessing internal background levels. Schedule delayed due to leaks search and

- Tellurium purification plant commissioning ongoing \rightarrow Done by beginning of 2020.

TELLURIUM STORED UNDERGROUND → COSMOGENICS 'COOL DOWN'

SUMMARY

- SNO+ completed its water phase:
 - Two physics analyses completed: invisible nucleon decay and solar neutrinos -
 - Measured external backgrounds
 - More analyses to come: neutron production, anti-v, etc.
- SNO+ started pure scintillator phase:
 - Low energy solar neutrino physics
 - Reactor and geo-neutrino physics
- SNO+ will start deploying Te by 2020 to search for 0vββ

- U. Pennsylvania
- U. Chicago
- U. C. Berkeley/LBNL
- U. Boston
- U. C. Davis
- BNL

- U. Alberta
- Queen's University
- Laurentian University
- TRIUMF
- SNOLAB

- LIP Lisboa
- LIP Coimbra

Universidad Nacional Technical University a Autonoma de Mexico Dresden

- Oxford University
- University of Sussex
- Liverpool University
- Lancaster University
- Queen Mary University of London
- Kings College London

BACKUP

NUCLEON DECAY ANALYSIS DETAILS

Data set	1	2	3	4	5	6	Total
Duration (d)	5. 1	14.9	30.7	29.4	11.5	23.2	114.7

TABLE I. Live time within each data set, in days.

Number of selected events

Data	Observed	Expected
set	events	events
1	1	$1.17^{+4.60}_{-0.05}~^{+1.33}_{-0.39}$
2	2	$2.35^{+4.62}_{-0.40} {}^{+3.44}_{-0.81}$
3	4	$3.47^{+4.60}_{-0.15}$ $^{+3.11}_{-0.96}$
4	8	$3.37^{+4.60}_{-0.17}~^{+2.70}_{-0.98}$
5	1	$1.46^{+4.60}_{-0.13}$ $^{+2.17}_{-0.60}$
6	6	$5.84^{+7.40}_{-2.31}$ $^{+2.68}_{-0.62}$
Total	22	$17.65^{+12.68}_{-2.36}~^{+6.51}_{-1.85}$

Data			Expe	cted events			
set	Internal	External	Solar	Reactor	Atmospheric	Instrumental	PMTs
1	$0.34 \pm 0.04^{+1.25}_{-0.34}$	$0.18 \pm 0.03^{+0.48}_{-0.18}$	$0.57 {\pm} 0.01 {}^{+0.03}_{-0.03}$	$0.03 \pm 0.00^{+0.01}_{-0.01}$	$0.06 \pm 0.00^{+0.04}_{-0.03}$	$0.00\substack{+0.06\\-0.00}$	$0.0\substack{+4.6 \\ -0.0}$
2	$0.70 \pm 0.11^{+2.52}_{-0.70}$	$0.39 \pm 0.38^{+2.32}_{-0.39}$	$1.05 \pm 0.01^{+0.05}_{-0.07}$	$0.08 \pm 0.00^{+0.02}_{-0.02}$	$0.13 \pm 0.01 \substack{+0.09 \\ -0.07}$	$0.00\substack{+0.34\\-0.00}$	$0.0^{+4.6}_{-0.0}$
3	$0.68 \pm 0.09^{+2.83}_{-0.68}$	$0.63 \pm 0.12^{+1.27}_{-0.63}$	$1.46 \pm 0.02^{+0.08}_{-0.10}$	$0.16 \pm 0.00^{+0.03}_{-0.03}$	$0.27 \pm 0.02^{+0.18}_{-0.14}$	$0.26 {\pm} 0.17$	$0.0^{+4.6}_{-0.0}$
4	$0.91 \pm 0.15^{+2.68}_{-0.91}$	$0.42 {\pm} 0.07 {}^{+0.29}_{-0.32}$	$1.57 \pm 0.02^{+0.10}_{-0.11}$	$0.10 \pm 0.00^{+0.03}_{-0.02}$	$0.25 \pm 0.02^{+0.17}_{-0.13}$	$0.13 {\pm} 0.09$	$0.0\substack{+4.6 \\ -0.0}$
5	$0.57 \pm 0.12^{+2.14}_{-0.57}$	$0.18{\pm}0.04^{+0.39}_{-0.18}$	$0.61{\pm}0.01^{+0.04}_{-0.04}$	$0.04 \pm 0.00^{+0.01}_{-0.01}$	$0.06{\pm}0.01^{+0.04}_{-0.03}$	$0.00\substack{+0.07\\-0.00}$	$0.0\substack{+4.6 \\ -0.0}$
6	$0.58 \pm 0.18^{+2.66}_{-0.58}$	$0.17 \pm 0.04^{+0.24}_{-0.17}$	$1.18{\pm}0.01^{+0.06}_{-0.07}$	$0.08 \pm 0.00^{+0.02}_{-0.02}$	$0.15 \pm 0.02^{+0.10}_{-0.08}$	$0.08 {\pm} 0.07$	$3.6^{+7.4}_{-2.3}$

Parameter	Uncertainty, δ_i	Systematic	n (events/day)	p (events/day)	pp (events/day)	pn (events/day)	nn (ev
x offset (mm)	+16.4 -18.2	Best fit	0.66	0.55	0.57	0.99	۲ ۲
v offset (mm)	+22.3 -10.2	Energy scale	+0.42, -0.21	+0.25, -0.13	+0.21, -0.12	+0.41, -0.23	+0.53
z offset (mm)	+38.4	Energy resolution	± 1.01	± 0.67	± 0.60	± 1.11	±
\mathbf{x} scale (%)	-10.7 +0.91	x-shift	± 0.02	± 0.01	± 0.01	± 0.02	±
\mathbf{x} scale (%)	-1.01 + 0.92	y-shift	± 0.01	± 0.01	± 0.01	± 0.02	±
y scale (70)	-1.02 + 0.92	z-shift	+0.02, -0.01	+0.01, -0.01	+0.01, -0.01	+0.03, -0.01	+0.05
$\frac{2 \text{ scale}(70)}{2 \text{ scale}(70)}$	-0.99	xyz-scale	+0.14, -0.13	+0.10, -0.09	+0.10, -0.08	+0.19, -0.16	+0.31
x resolution (mm)	104	eta_{14}	± 0.04	± 0.03	± 0.03	± 0.07	±
y resolution (mm)	98	Direction	+0.14, -0.07	+0.11, -0.07	+0.11, -0.08	+0.21, -0.13	+0.44
z resolution (mm)	106	Total (syst.)	+1.12, -1.05	+0.73, -0.69	+0.65, -0.62	+1.22, -1.15	+1.43
Angular resolution	$+0.08 \\ -0.13$	Statistical	+0.57, -0.48	+0.42, -0.37	+0.42, -0.40	+0.75, -0.71	+2.16
eta_{14}	± 0.004	90% C.I.	2.64	1.85	1.76	3.21	6

Background budget in water phase

Breakdown of impact of systematics uncertainties

SOLAR NEUTRINO ANALYSIS DETAILS

Event selection

Selection	Passing Triggers
Total	$12 \ 447 \ 734 \ 554$
Low-level cuts	4 547 357 090
Trigger Efficiency	$126 \ 207 \ 227$
Fit Valid	$31 \ 491 \ 305$
Fiducial Volume	$6 \ 958 \ 079$
Hit Timing	$2\ 752\ 332$
Isotropy	$2\ 496\ 747$
Energy	820

Systematics	
Systematic	Effect
Energy Scale	3.9%
Fiducial Volume	2.8%
Angular Resolution	1.7%
Mixing Parameters	1.4%
Energy Resolution	0.4%
Total	5.0%

BACKGROUND ANALYSIS REGIONS

ANT – NEUTRINOS DETECTION IN WATER

SNO+ IS ABLE TO DETECT NEUTRONS FROM AmBe SOURCE WITH ~47% EFFICIENCY

