

Solar Neutrino Physics with Borexino

Chiara Ghiano

on behalf of the Borexino collaboration ICNFP 2019 — 8th International Conference on New Frontiers in Physics OAC, Kolymbari, Crete

photo: BOREXINO calibration

The BOREXINO detector

Two Nylon balloons 150 μ m thick **Inner Vessel** (8.5 m, V = 340 m³) Filled with 278 tons of scintillator (PC @ 1.5 g/l of PPO) Inner Buffer (11.5 m) filled with PC + DMP

2212 8" ETL 9351 PMTs mounted inside the SSS

Stainless Steel Sphere $(d=13.7 \text{ m}, \text{Volume} = 1340 \text{ m}^3)$

Water Tank (d=18 m, V = 2400 m³) Shielding from γ and n. Water Cerenkov detector (Muon Veto) 208 PMTs

ICNFP 2019, 21-30 August, Kolimbary Crete

Solar fusion reactions

Fusion reactions in the Sun (and in H-burning stars) that convert H to He \rightarrow produce ν

$4\mathrm{p} ightarrow {}^4\mathrm{He} + 2\mathrm{e}^+ \, + 2\, u_{_e} + 26.7~\mathrm{MeV}$

pp-chain (5 ν species) > 99% energy production

 $\begin{array}{l} \textbf{CNO-cycle (3 ν species))} \\ \textbf{contribute < 1\% energy production} \\ \textbf{heavy star dominant} \end{array}$

ICNFP 2019, 21-30 August, Kolimbary Crete

Study the Sun with neutrinos Study neutrinos with the Sun

(1) To measure solar neutrino flux \rightarrow test Standard Solar Model

 \rightarrow Astrophysics interest: Solve solar metallicity Problem : tension between High Metallicity and Low Metallicity Solar Models (abundance of heavy elements in the Sun)

 \rightarrow Agreement between optical and neutrino luminosity: solar stability at 10⁵ years scale

 \rightarrow Testing energy production mechanisms

(2) Particle Physics interest \rightarrow confirm LMA-MSW

Borexino can measure the P_{ee} (electron neutrino Survival probability) both in the matter-enhanced oscillation region and in the vacuum region.

 \rightarrow testing the LMA (Large Mixing Angle) -MSW Oscillation (matter effects) analysis solution to Neutrino oscillations (energy dependent day/night effects)

FLUX	B16-GS98	B16- AGSsmet	DIFF (HZ-LZ)/HZ
pp $(10^{10} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	$5.98(1{\pm}0.006)$	$6.03(1{\pm}0.005)$	-0.8%
$pep (10^8 cm^{-2} s^{-1})$	$1.44(1{\pm}0.01)$	$1.46(1{\pm}0.009)$	-1.4%
⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	$4.94(1{\pm}0.06)$	$4.50(1{\pm}0.06)$	8.9%
⁸ B (10 ⁶ cm ⁻² s ⁻¹)	$5.46(1{\pm}0.12)$	$4.50(1{\pm}0.12)$	17.6%
13 N (10 ⁸ cm ⁻² s ⁻¹)	$2.78(1{\pm}0.15)$	$2.04(1\pm0.14)$	26.6%
¹⁵ O (10 ⁸ cm ⁻² s ⁻¹)	$2.05(1{\pm}0.17)$	$1.44(1{\pm}0.16)$	29.7%
¹⁷ F (10 ⁸ cm ⁻² s ⁻¹)	$5.29(1{\pm}0.20)$	$3.26(1{\pm}0.18)$	38.3%

Solar Neutrinos Flux on Earth

Solar Neutrinos Flux on Earth

Borexino performance

The Borexino PMTs detect the scintillation light produced by electrons scattered by Neutrinos

For each scintillation event Borexino records:

*** Number of collected photons** (Photoelectron yield 500 p.e./MeV)

ightarrow Energy Good energy resolution ~ 5% @ 1MeV

- **★** Time of arrival of photons
- → Position reconstruction (by T.O.F.) Good position reconstruction ~10cm @ 1 MeV
- \rightarrow For α and β^+ we can apply the pulse shape discrimination α / β , $\beta^+ \beta^-$

 $\mathbf{Drawbacks} \rightarrow \mathbf{No\ directionality}$

 \rightarrow Crucial point: Extreme low background required!!!

★ Very low energy threshold (~<100 keV)

Solar Neutrino Detection: Elastic Scattering

(1) Theory: Solar neutrino spectrum

(2) Data: Electron recoil spectrum in Borexino $ightarrow u + { m backgrounds}$

ICNFP 2019, 21-30 August, Kolimbary Crete

Solar Neutrino Detection: Elastic Scattering

(1) Theory: Solar neutrino spectrum

(2) Data: Electron recoil spectrum in Borexino $ightarrow u + { m backgrounds}$

${\bf (3) \ Fit} \rightarrow \nu + {\rm backgrounds \ rates}$

ICNFP 2019, 21-30 August, Kolimbary Crete

Borexino Achievements so far

Phase I vs Phase II

Comprehensive measurement of pp-chain solar neutrinos

Analysis performed in two energy ranges:

- LER \rightarrow pp, pep, ⁷Be, CNO (0.19 - 2.93 MeV) Exposure: 1291.51 days \times 71.3 t First simultaneous extraction of pp, pep and ⁷Be rates
- HER \rightarrow ⁸B, hep (3.2 - 16 MeV) HER-I (3.2 - 5.7 MeV) HER-II (5.7 - 16 MeV)

no natural long-lived radioactive background above 5 $\,{\rm MeV}$

 \rightarrow HER and LER have different backgrounds

Comprehensive measurement of pp-chain solar neutrinos

Analysis performed in two energy ranges:

- LER \rightarrow pp, pep, ⁷Be, CNO (0.19 - 2.93 MeV) Exposure: 1291.51 days \times 71.3 t First simultaneous extraction of pp, pep and ⁷Be rates
- HER \rightarrow ⁸B, hep (3.2 - 16 MeV) HER-I (3.2 - 5.7 MeV) HER-II (5.7 - 16 MeV)

no natural long-lived radioactive background above 5 $\,{\rm MeV}$

 \rightarrow HER and LER have different backgrounds

¹¹C background rejection

$^{11}C \rightarrow ^{11}Be + e^+ + \nu_{e}$

Three-fold Coincidence technique (TFC) for ¹¹C tagging suppression of cosmogenic ¹¹C (e⁺) ($\tau = 29.4$ min)

★ Space-time correlation between muon track, neutron capture, ^{11}C decay

 ★ (92±4)% ¹¹C-tagging effiency
 ★ (64.28±0.01)% of the total exposure in the TFC-subtracted spectrum

lpha $^{11}{
m C}$ rate: $27
ightarrow 2.5 ~{
m cpd}/100 {
m tons}$

PULSE SHAPE technique to discriminate $\beta^{-}\beta^{+}$ events

- ★ e⁺ can form ortho-positronium with 50% probability and ~3ns lifetime in Borexino's scintillator
- \bigstar formation of different pulse shapes for electrons and positrons
 - \rightarrow distribution of scintillation time signal for e^+ delayed with rispect to e^-
 - \rightarrow different event topology (energy deposit is not point-like because of the two annihilation gammas)

Chiara Ghiano, LNGS

ICNFP 2019, 21-30 August, Kolimbary Crete

Multivariate approach

Main analysis variable is **visible energy**

 \rightarrow Spectral fit: fit of known signal and background spectra to the data spectrum to extract neutrino rates

 \rightarrow Multivariate fit analysis includes further variables in analysis fit, originally developed for pep-neutrino analysis (2012)

Tecnique consists in including in the likelihood:

$\star 2$ energy spectra

TFC-subtracted: 64% of exposure, 8% of ¹¹C TFC-tagged: 46% of exposure, 92% of ¹¹C

\star pulse shape analysis for β^+/β^- separation

 $\begin{array}{l} \mbox{Pulse-shape discriminator (PSD) of e^+/e^-:} \\ ({}^{11}\mbox{C decays emiting β^+}) \mbox{ based on the difference of the scintillation time profile for e^- and e^+} \end{array}$

★ Radial distribution

To better disentangle external background from internal contaminants

Multivariate analysis

Multivariate Likelihood Definition:

$$\mathcal{L}_{MV}(\boldsymbol{\theta}) = \mathcal{L}_{tag}(\boldsymbol{\theta}) \cdot \mathcal{L}_{sub}(\boldsymbol{\theta}) \cdot \mathcal{L}_{PS}(\boldsymbol{\theta}) \cdot \mathcal{L}_{Rad}(\boldsymbol{\theta})$$

* 2 energy spectra

- \rightarrow TFC tagged energy spectrum
- \rightarrow Energy spectrum after TFC veto
- ★ Radial Distribution \rightarrow To better disentangle external background from internal contaminants

★ Pulse Shape Analysis

Improved measurement of ⁸B solar neutrinos with 1.5 kt y of Borexino exposure

- ★ Fit done on radial distribution in two energy ranges HER-1 (3.2 -5.7 MeV) HER-2 (5.7-16 MeV) No natural radioactivity expected above 5 MeV
- ★ Data-set: January 2008 December 2016 Total exposure: 1.5 kton years ; (x 11.5 of the Phase I analysis)
- \star 🛛 No FV cut
- $\bigstar \quad \begin{array}{l} \texttt{Better understanding of backgrounds} \\ (external \gamma s, cosmogenic) \end{array}$

Gamma due to n capture n produced through (a,n) reaction ²⁰⁸Tl from ²³²Th of the vessel and in the scintillator bulk PDF from MonteCarlo

★ Lowest energy threshold among Real Time Detectors

fit of the radial distribution of the events in the HER1

$\mathbf{BX} \ \mathbf{Phase} \ \mathbf{II} \ \mathbf{Results} \to \mathbf{Nature} \ \mathbf{Paper}$

* pp neutrinos: improved accuracy respect to previous Borexino results
 * ⁷Be neutrinos: 2.7% precision, twice more accurate than SSM predictions
 * pep neutrinos: significance > 5σ for the first time (constraining CNO rate)
 * CNO neutrinos: confirmed previous Borexino result, best upper limit available

First Simultaneous Precision Spectroscopy of pp, ⁷Be, and pep Solar Neutrinos with Borexino Phase-II

+

Improved measurement of ⁸B solar neutrinos with 1.5 kt y of Borexino exposure

Comprehensive measurement of pp-chain solar neutrinos

Nature volume 562, pages 505–510 (2018)

ARTICLE

 \rightarrow

Comprehensive measurement of *pp*-chain solar neutrinos

About 99 per cent of solar energy is produced through sequences of nuclear reactions that convert hydrogen into halium, starting from the fusion of two protons (the pp chain). The neutrinose mitted by five of these reactions represent a unique probe of the Su's internal working and, at these will time, offer an intense natural neutrino ison for fundamental physics produced by four reactions of the chain the initial protons-proton fusion, the electron-capture decay of bery produced by four reactions of the chain the initial protons-proton fusion, the electron-capture decay of bery like three-body proton-electron-proton (pp) busion, here measured with the highest precisions of a rachieved, and the boron-8 beta decay, measured with the lowest energy threshold. We also set a limit on the neutrino integrity of the two primary terminations of the pchain (pp-1) and pp-1] and an indication that the temperature profile in the Suy of the strate starting measured measurements provide a direct determination of the relative all produced by first starting and the strate strate the initiation of the relative all produced by primary terminations of the pp chain (pp-1) and pp-1] and an indication that the temperature profile in the Suy of the two primary terminations of the produced the strate-energing simultaneously and with high precision the neutrino flavourconversion nautrinos at different energies, thus probing simultaneously and with high precision the neutrino flavourconversion paradim. bot in vacuum and in matter-dominated regimes.

tps://doi.org/10.1038/s41586-018-0624-

BX Phase II Results

All rates are fully compatible with and improve the uncertainty of the previously published Borexino results

	Phase I $(cpd/100t)$	Phase II (cpd/100t)	Uncertainty reduction
рр	$144{\pm}13{\pm}10$	$134{\pm}10^{+6}_{-10}$	1.3
⁷ Be	$48.3{\pm}2.0{\pm}0.9$	$48.3{\pm}1.1^{{+}0.4}_{{-}0.7}$	1.8
рер	$3.1{\pm}0.6{\pm}0.3$	$\begin{array}{c} ({\rm HZ}) \ 2.43 {\pm} 0.36^{+0.15} \\ ({\rm LZ}) \ 2.65 {\pm} 0.36^{+0.15} \\ \end{array}$	1.6
⁸ B	$0.217{\pm}0.038{\pm}0.008$	$0.223^{\scriptscriptstyle +0.015}_{\scriptscriptstyle -0.016} {\pm 0.006}$	2.4
CNO	$< 7.9 \ (95 \ \% { m C.L.})$	$< 8.1 \ (95 \ \% { m C.L.})$	

Global analysis: electron neutrino survival probability

From the measured interacton rates and assuming HZ-SSM fluxes we get:

 $egin{aligned} & \mathrm{P}_{_{\mathrm{ee}}}(\mathrm{pp}){=}0.57{\pm}0.10 \ & \mathrm{P}_{_{\mathrm{ee}}}(^{7}\mathrm{Be},\!862\mathrm{KeV}){=}0.53{\pm}0.05 \ & \mathrm{P}_{_{\mathrm{ee}}}(\mathrm{pep}){=}0.53{\pm}0.05 \ & \mathrm{P}_{_{\mathrm{ee}}}(^{8}\mathrm{B}){=}0.36{\pm}0.8{<}\mathrm{E_{v}}{>}{=}8.7~\mathrm{MeV} \end{aligned}$

 \rightarrow Only experiment to simultaneously test neutrino flavour conversion both in the vacuum and in the matterdominated regimes

 \rightarrow Most precise in the low-energy range(vacuum oscillations)

 \rightarrow Excellent agreement with MSW-LMA solution

 \rightarrow Rejection of vacuum LMA hypothesis at 98.2%

Global analysis: metallicity

The metallicity determines the opacity of solar plasma and, as a cosequence, regulates the central T of the Sun and the Branching Ratios of the different pp- chain terminations

note: only 1 σ theoretical uncertainty in the plot \rightarrow important to reduce the theoretical uncertainty

${\bf Key \ to \ the \ Solar \ metallicity: CNO \ flux }$

Motivations:

★ CNO neutrinos have never been detected According to astrophisical models, CNO cycle is responsible of ~1% of the solar luminosity and it is the main mechanism of energy generation in massive stars

★ CNO neutrinos measurement will allows to complete the SSM and stellar astrophysics

help solar physicists to solve the solar metallicity problem

 $\begin{array}{l} \mbox{Expected CNO rate (MSW-LMA):} \\ \mbox{High metallicity} \\ (B16)GS98 \quad \mbox{R}_{_{\rm CNO}} = 4.91 \pm 0.55 \ {\rm cpd}/100 \ {\rm t} \\ \\ \mbox{Low Metallicity} \\ (B16)AGSS09 \ \mbox{R}_{_{\rm CNO}} = 3.52 \pm 0.37 \ {\rm cpd}/100 \ {\rm t} \end{array}$

 $\begin{array}{ll} \text{Borexino:} & \Phi(\text{CNO}) < 7.9 \times 10^8 \, \text{cm}^{\text{-2}} \, \text{s}^{\text{-1}} \, (95\% \, \text{C.L.}) \\ & \text{R}(\text{CNO}) < 8.1 \, \text{cpd}/100 \, \text{t} \, (95\% \, \text{C.L.}) \end{array}$

ICNFP 2019, 21-30 August, Kolimbary Crete

Key to the Solar metallicity : CNO flux

The detection of CNO neutrinos in Borexino is challenging:

- ★ The low flux of CNO neutrinos (CNO cycle responsible of $\approx 1\%$ of the total Solar Power)
- \star The absence of prominent spectral features
- \star Anticorrelation with ²¹⁰Bi and pep ν

Note also the low rate:

- $ightarrow {f R(CNO)}$ expected ~ 3-5 cpd/100ton
- $ightarrow {f R(\,^{210}Bi)}$ ~ 20 cpd/100ton
- \rightarrow **R(pep)** ~ 2.7 cpd/100ton

The spectral fit returns only the sum of the components, if both are left free!

Borexino data $CNO \nu$ expected spectrum ²¹⁰Bi spectrum pep ν spectrum

 \rightarrow Strict anticorrelation between CNO $\nu,$ pep ν and $^{\rm 210}{\rm Bi}$

Key to the Solar metallicity : CNO flux Strategy **Background rate in the ROI**

 \star (1) Measure the ²¹⁰Po rate to costrain ²¹⁰Bi and remove degeneracy with **CNO** spectrum

²¹⁰Pb
$$\xrightarrow{\beta^{-}}_{32 \text{ y}}$$
 ²¹⁰Bi $\xrightarrow{\beta^{-}}_{7.23 \text{ d}}$ ²¹⁰Po $\xrightarrow{\alpha}_{199.1 \text{ d}}$ ²⁰⁶Pb

²¹⁰**Po** is "easier" to identify wrt ²¹⁰Bi:

- Monoenergetic decay \rightarrow "gaussian" peak
- α decay \rightarrow pulse shape discrimination

If the ²¹⁰Bi is in radioactive equilibrium with ²¹⁰Po, an independent measurement of the latter decay rate gives directly the ²¹⁰Bi.

²¹⁰**Bi** homogeneity is required \rightarrow Thermal insulation for preventing convective motions and **background** mixing

(2) Temperature stabilization for preventing Background mixing

We observed ²¹⁰Po leaching out the nylon vessel and moving into the FV due to convection motions

 \rightarrow Thermal insulation & temperature control of the detector to reduce and control thermal gradients

(3) Purification

further purification of the LS by water extraction to reduce ²¹⁰Bi

Temperature stabilization

Hardware

 \rightarrow Insulation with rock wool (2015)

ightarrow Active T control system

Monitoring

 $\rightarrow 54$ temperature probes located both in the buffer and in the external tank and at different levels

Results

ightarrow The T profile has stabilized after insulation ightarrow We are collecting data in these stable conditions to verify our capability to tag ²¹⁰Bi from ²¹⁰Po

ICNFP 2019, 21-30 August, Kolimbary Crete

Sensitivity to CNO ν detection

- Low metallicity rate only analysis
- Low metallicity rate + shape analysis
- High metallicity rate only analysis
- High metallicity rate + shape analysis
- \rightarrow what level of precision on the background do we need?

Sensitivity studies with thousands of data-sets simulated with toy MC with different constraints on $^{210}\mathrm{Bi}$ and pep

ightarrow Possibility to get a measurement of CNO flux between 2σ and 4σ

Conclusions and Outlook

***** We are approaching 12 years of Borexino running with

- \rightarrow Unprecedented backgrounds
- \rightarrow A new wide range multivariate fit strategy
- \rightarrow Low-background techniques developed

★ Borexino alone has performed the full spectroscopy of pp-chain neutrinos

- \rightarrow improved precision in all flux measurements
- ightarrow ⁷Be (862+384) precision 2.7 % (stat+sys)
- $\rightarrow 5\sigma$ evidence of pep Neutrinos for the first time
- \rightarrow Improved 8B measurement
- \rightarrow Borexino has slight preference to High Metallicity at 96.6 % C. L.
- \rightarrow Exclusion of Vacuum-LMA scenario at 98.2 % C. L.
- \rightarrow Simultaneous test of the $\mathbf{P}_{_{\mathrm{ee}}}$ in the vacuum and matter dominated region;
- \rightarrow test of Sun's nuclear processes and its long term stability

★ CNO Sensitivity and Measurement under investigation

- $ightarrow {
 m Current \ Best \ Limit: \Phi \ (CNO) < 7.9 imes 10 \ {
 m cm^{-2} \ s^{-1}} \ (95 \ \% \ {
 m C.L.})}$
- \rightarrow Future: Continue data taking with stable condititions to attempt a CNO measurement

BOREXINO COLLABORATION

Backup slides

ICNFP 2019, 21-30 A	ugust, Kolimbary	y Crete
---------------------	------------------	---------

the pulse-shape variable we can actually see the pep ν shoulder!

Break ²¹⁰Bi – pep - CNO correlation by fixing the CNO rate to: R_{CNO} (HZ) = 4.92 ± 0.55 cpd/100t R_{CNO} (LZ)= 3.52 ± 0.37 cpd/100t

Sensitivity studied from distribution of maximum likelihood estimators obtained from simulated datasets \rightarrow Clear correlation between CNO, ²¹⁰Bi and pep

 $\rightarrow 5\sigma$ evidence of pep signal

(including systematic errors)

The Borexino signal

Mainly a solar neutrino experiment: $\nu_e + e \rightarrow \nu_e + e$ in an organic liquid scintillator But can detect also **anti-neutrinos** (Geo, Reactors, SuperNova)

☆ Neutrinos

Elastic scattering on electrons: $\nu + e^- \rightarrow \nu + e^-$ Mono energetic ν produce characteristic shoulder

@1-2 MeV for electron flavour: $\sigma \sim 10^{-44}$ cm² for μ, τ flavours: σ is ~6x smaller

* Electron anti neutrinos Inverse β -decay on p

$$\bar{\nu_e} + p \rightarrow n + e^+$$

$$n \to p + d + \gamma(2.2MeV)$$

 $(250 \ \mu sec)$

Energy threshold = 1.8 MeV

Electron flavour only σ @ few MeV ~10⁻⁴² cm² (~100 x more than scattering)

ICNFP 2019, 21-30 August, Kolimbary Crete

Sensitivity studied from distribution of maximum likelihood estimators obtained from simulated datasets

Clear correlation between CNO, ²¹⁰Bi and pep

²¹⁰Po rate evolution in time

18

Background issues

Source contami	of .nation	Typical flux	Borexino requirements	Strategy (hardware)	<pre>Strategy (softw.)</pre>	Result phase 1	Result phase 2
μ	cosmic	~200 s ⁻¹ m ⁻² @ sea level	< 10 ⁻¹⁰ s ⁻¹ m ⁻²	Underground, water detector	Cherenkov PS analysis	< 10 ⁻¹⁰ eff > 0.9992	< 10 ⁻¹⁰ eff > 0.9992
γ	Rock			water	FV	negligible	negligible
γ	PMT, SSS			buffer	FV	negligible	negligible
¹⁴ C	Intrinsic PC	~ 10^{-12} g/g	~ 10 ⁻¹⁸ g/g	selectioon	threshold	~2 10 ¹⁸ g/g	~2 10 ¹⁸ g/g
²³⁸ U ²³² Th	Dust, metallic	10 ^{-₅} -10 ⁻⁶ g/g	< 10 ⁻¹⁶ g/g	Distillation WE, filtration, mat. Selection, cleanliness	Tagging α/β	1.6+-0.1 10 ⁻¹⁷ g/ g 5.1+-1 10 ⁻¹⁸ g/g	< 9.4 10 ⁻²⁰ g/g < 5.7 10 ⁻¹⁹ g/g
⁷ Be	cosmogenic	~ 3 10 ⁻² Bq/t	< 10 ⁻⁶ Bq/t	distillation		Not seen	Not seen
40 K	Dust, PPO	~2 10 ⁻⁶ g/g (dust)	< 10 ⁻¹⁸ g/g	Distillation , WE		Not seen	Not seen
²¹⁰ Po	Surface cont. from ²²² Rn		< 1c/d/t	Distillation , WE, filtration, cleanliness	fit	May '07 70 c/d/ t Jan '10 ~1 c/d/ t	< 1 c/d/t
²²² Rn	Emanation from materials, rock	10 Bq/l air, water 100-1000 Bq rock	< 10 cpd 100 t	N_2 stripping cleanliness	Tagging α/β	< 1 cpd 100t	< 0.1 cpd 100t
³⁹ Ar	Air, cosmogenic	17 mBq/m³ (air)	< 1 cpd 100 t	N ₂ stripping	fit	<< 85Kr	<< ⁸⁵ Kr
⁸⁵ Kr	Air, nuclear weapons	l Bq/m³(air)	< 1 cpd 100 t	N ₂ stripping	fit	30 +-5 cpd/100t	< 7 cpd/100 t
²¹⁰ Bi	Surface cont. from ²²⁰ Rn			Water extraction	fit	10-50 cpd/100t	~17 cpd/100 t

BX Phase II Results arXiv:1707.09279

	Borexino experimental results		В	16(GS98)-HZ	B16(AGSS09)-LZ	
Solar ν	Rate	Flux	Rate	Flux	Rate	Flux
	[cpd/100 t]	$[\rm cm^{-2} \rm s^{-1}]$	$\left[\mathrm{cpd}/\mathrm{100t} \right]$	$[cm^{-2}s^{-1}]$	[cpd/100 t]	$[cm^{-2}s^{-1}]$
pp	$134 \pm 10 {}^{+6}_{-10}$	$(6.1 \pm 0.5 {}^{+0.3}_{-0.5}) \times 10^{10}$	131.1 ± 1.4	$5.98 (1 \pm 0.006) \times 10^{10}$	132.2 ± 1.4	$6.03 (1 \pm 0.005) \times 10^{10}$
$^{7}\mathrm{Be}$	$48.3 \pm 1.1 {}^{+0.4}_{-0.7}$	$(4.99 \pm 0.11 {}^{+0.06}_{-0.08}) \times 10^9$	47.9 ± 2.8	$4.93(1\pm0.06)\times10^9$	43.7 ± 2.5	$4.50 (1 \pm 0.06) \times 10^9$
pep (HZ)	$2.43 \pm 0.36 \ ^{+0.15}_{-0.22}$	$(1.27 \pm 0.19 {}^{+0.08}_{-0.12}) \times 10^8$	2.74 ± 0.04	$1.44 (1 \pm 0.009) \times 10^8$	2.78 ± 0.04	$1.46(1\pm0.009)\times10^{8}$
pep (LZ)	$2.65 \pm 0.36 \ ^{+0.15}_{-0.24}$	$(1.39 \pm 0.19 {}^{+0.08}_{-0.13}) \times 10^8$	2.74 ± 0.04	$1.44 (1 \pm 0.009) \times 10^8$	2.78 ± 0.04	$1.46(1\pm0.009)\times10^{8}$
CNO	$< 8.1 (95\% \mathrm{C.L.})$	$< 7.9 \times 10^8 $ (95% C.L.)	4.92 ± 0.55	$4.88(1\pm0.11) imes10^8$	3.52 ± 0.37	$3.51 (1 \pm 0.10) \times 10^8$

⁸⁵Kr: Factor 4.6 reduction
with respect to Phase-I
²¹⁰Bi: Factor 2.3 reduction
with respect to Phase-I

Background	Rate
	$\left[\mathrm{cpd}/\mathrm{100t} \right]$
$^{14}C [Bq/100 t]$	40.0 ± 2.0
 85 Kr	6.8 ± 1.8
 ²¹⁰ Bi	17.5 ± 1.9
$^{11}\mathrm{C}$	26.8 ± 0.2
²¹⁰ Po	260.0 ± 3.0
Ext. 40 K	1.0 ± 0.6
Ext. 214 Bi	1.9 ± 0.3
Ext. 208 Tl	3.3 ± 0.1

	pp		$^{7}\mathrm{Be}$		$p\epsilon$	p
Source of uncertainty	-%	+%	-%	+%	-%	+%
Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0
Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4
Pile-up modeling	-2.5	0.5	0	0	0	0
Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0
Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8
Inclusion of ⁸⁵ Kr constraint	-2.2	2.2	0	0.4	-3.2	0
Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05
Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05
Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6
Total systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6

Temperature stabilization

- (1) insulation started
- (2) Water Loop turned off
- (3)5th ring insulation completed,
- (4)Organ Pipes and 6th ring insulation completed,
- (5)CR4 floor and Top Organ Pipes insulation completed,
- (6) Temperature Active Control System tests started
- (7)Hall C active control started.

ICNFP 2019, 21-30 August, Kolimbary Crete

Fit results

Zoom into low-energy part of the spectrum

 ${}^7{
m Be}
ightarrow {
m precision improved beyond 3\% level}$

- ${\bf pp} \rightarrow {\rm absolute\ precision\ improved\ by\ } 10\%$
- $\begin{array}{l} \textbf{pep} \rightarrow > 5\sigma \ \mathrm{evidence} \ \mathrm{in} \ \mathrm{LZ/HZ}, \\ \mathrm{including} \ \mathrm{systematics} \end{array}$

 $\mathbf{CNO} \rightarrow \mathrm{slightly}$ worse limit because of less stringent assumptions on pep rate

Pep-neutrino characteristic shoulder is made visible by applying more stringent cuts (R<2.8 m and L_{PS} <4.8)

Seasonal modulations of the ⁷Be solar neutrino rate Astroparticle Physics 92 (2017)

Search for the seasonal variations of the neutrino interaction rate due to the varying distance L(t) between Sun and Earth during the year

- \rightarrow Confirms the solar origin of the observed signal
- \rightarrow Measurement of the astronomic year with solar neutrinos
- \rightarrow The absence of an annual modulation is rejected at 99.99% C.L.

After ²¹⁰Po subtraction by pulse-shape discrimination

Fit to the evolution of the rate in time (bin of 30 days)

 $m{\epsilon} = 1.74 \pm 0.45 \ \%$ T = 367 $\pm 10 \ \mathrm{days}$ $\Phi = -18 \pm 24 \ \mathrm{days}$

ICNFP 2019, 21-30 August, Kolimbary Crete

Borexino visible energy spectrum and background rejection

ICNFP 2019, 21-30 August, Kolimbary Crete

Borexino backgrounds

internal radioactivity

traces of radioisotopes in the scintillator (U,Th,⁴⁰K)

external γ rays from fluid buffer, steel sphere, PMT glass and light concentrators (⁴⁰K,²⁰⁸TI,²¹⁴Bi)

External

Internal

radon emanation from the PMTs and steel sphere

cosmic muons and their secondaries

cosmogenics

neutrons and radionuclides from $\boldsymbol{\mu}$ spallation and hadronic showers

fast neutrons from external muons

Improved measurement of ⁸B solar neutrinos with 1.5 kt y of Borexino exposure

what is improved in analysis:

 Fit done on radial distribution in two energy ranges HER-1 (3.2 -5.7 MeV) HER-2 (5.7-16 MeV)

No natural radioactivity expected above 5 MeV

- ★ Data-set: January 2008 December 2016 (Purification period removed)
- ★ No FV cut
- ★ Total exposure: 1.5 kton years ;
 (x 11.5 of the Phase I analysis)
- $\bigstar \quad \begin{array}{l} \text{Better understanding of backgrounds} \\ (\text{external } \gamma \text{s}, \text{cosmogenic}) \end{array}$
- Lowest energy threshold among Real Time Detectors

⁸B analysis performed in two energy ranges

Selection cuts (27.6% dead time)

- Removed muons
- \sim Neutron cut: 2 ms after all muons
- Cosmogenics cut: 6.5 after all internal muons (¹²B, ⁸He, ⁹C, ⁹Li, ⁸B, ⁶He, ⁸Li)
 ¹⁰C TFC cut: 120 s, 0.8 m radius sphere around neutrons
- ✓ Fast coincidence cut: no ²¹⁴Bi-²¹⁴Po
- \sim Coincidence cut: no events closer than 5 s

ICNFP 2019, 21-30 August, Kolimbary Crete

Improved measurement of ⁸B solar neutrinos with 1.5 kt y of Borexino exposure

arXiv:1709.00756

- ★ Radial Fit not Energy Fit → Not to assume shape of survival probability P_{∞}
- \star radial information used to discriminate signals from external backgrounds
- \bigstar Deep study of backgrounds close to the vessel border:
- ★ U/Th chain elements on the vessel (only ²⁰⁸Tl ranges above 3.2 MeV)
- \star emanation of ²²⁰Rn from the vessel \rightarrow additional ²⁰⁸Tl component
- \star high-energy gamma-rays from neutron capture on Fe/C

HER II Fit: [2950, 8500] p.e. $> 5.7 { m MeV}$

HER I Fit: [1650, 2950] p.e 3.2 to 5.7 MeV

Signal and backgrounds

Expected ~50 events/day on 100ton of liquid scintillator from neutrinos ~ $6 \ 10^{-9} \ Bq/kg$

But

- Natural water is $~10 \text{ Bq/Kg} \text{ in } {}^{238}\text{U}, {}^{232}\text{Th} \text{ and } {}^{40}\text{K}$
- Air is $\sim 10 \text{ Bq/m}^3$ in ^{39}Ar , ^{85}Kr and ^{222}Rn
- \bullet Typical rock is ${\sim}100{-}1000~Bq/m^3$ in ${}^{238}U,\,{}^{232}Th$ and ${}^{40}K$

 \rightarrow Borexino's scintillator must be 9/10 orders of magnitude less radioactive than anything on Earth!

Signal and backgrounds

Expected ~50 events/day on 100ton of liquid scintillator from neutrinos \rightarrow ~ 6 10⁻⁹ Bq/kg

But

- Natural water is $\sim 10 \text{ Bq/Kg}$ in ^{238}U , ^{232}Th and ^{40}K
- Air is $\sim 10 \text{ Bq/m}^3$ in ^{39}Ar , ^{85}Kr and ^{222}Rn

 \bullet Typical rock is ${\sim}100{-}1000~Bq/m^3$ in ${}^{238}U,\,{}^{232}Th$ and ${}^{40}K$

 \rightarrow Borexino's scintillator must be 9/10 orders of magnitude less radioactive than anything on Earth!

HOW??

 \rightarrow Principle of graded shielding: materials get more pure towards the detector core \rightarrow purification of target mass

15 years of work to reach the required Radio-purity

 $\begin{array}{l} \textbf{UNPRECEDENTELY} \\ \textbf{RADIO PURE DETECTOR !!} \\ ^{238} U < 9.4 \ 10^{-20} \ g/g \\ ^{232} Th \ < 5.7 \ 10^{-19} \ g/g \end{array}$

ICNFP 2019, 21-30 August, Kolimbary Crete