ICNFP2019: 8th International Conference on New Frontiers in Physics Orthodox Academy of Crete (OAC), Kolymbari, Greece 21-29 August 2019

Search for di-Higgs production at 13 TeV and prospects for HL-LHC

Yuta Sano (Nagoya Univ.) on behalf of the ATLAS

What we can access using HH production ^{2/14} ~Non resonant signals~

What we can access using HH production ^{3/14} ~BSM resonant signals~

<u>Models with a heavy spin-0 particle</u>: "Singlet extension", "2HDM", "hMSSM" <u>Models with a heavy spin-2 particle</u>: "Randall-Sundrum Graviton"

ggF and VBF are complementary to each other for the specific parameters due to different couplings at production.

Studied channels at 13 TeV

various decay channels in HH

Channels	∫L [fb-1]	Reference							
📩 bbbb	27.5-36.1	JHEP 01 (2019) 030							
📩 bbττ	36.1	Phys. Rev. Lett. 121 (2018) 191801							
📩 bbγγ	36.1	JHEP 11 (2018) 40							
WWWW	36.1	JHEP 05 (2019) 124							
WWγγ	36.1	Eur. Phys. J. C 78 (2018) 1007							
bbWW	36.1	JHEP 04 (2019) 092							
🔆 combination	36.1	1906.02025							
New this summer									
bblvlv	139	-							
★ VBF bbbb	126	ATLAS-CONF-2019-030							

Today, will report " \bigstar " that are the selected ggF analyses and the combination of them, two new analyses, and HL-LHC prospect of ggF analyses.

ggF HH→bbbb

27.5-36.1 fb⁻¹ JHEP 01 (2019) 030

- Feature: high statistics
- Two approaches for low mass and high mass regions

Resolved:

- 4 R=0.4 jets ("small-R jets")
- Relies critically on b-jet triggers

- Backgrounds
 - Multijet (95%): Data-driven estimation in
 CRs with reduced b-tagging for multijet bkg.
 - ttbar (5%): MC
- Uncertainty: dominated by QCD modeling unc.
- Observation is consistent with no enhanced di-Higgs production hypothesis.
- The limits on κ_{λ} will be shown at the combination results.

Boosted:

- 2 R=1.0 jets ("large-R jets")
- 3 categories(2,3,4 b-tags), based on number of b-tagged "track jets" associated with the large-R jets

Resolved SR

ggF HH \rightarrow bb $\tau \tau$

36.1 fb⁻¹ Phys. Rev. Lett. 121 (2018) 191801

- Feature: Fairly high statistics, clean with lepton channel
- Two channels, based on decays of the tau leptons: au lep au had, au had au had
 - Boosted Decision Trees (BDT) used to enhance the analysis sensitivity
- Backgrounds: ttbar (MC), QCD multijet(data driven), Z+HF(MC)
- Uncertainty: dominated by statistical uncertainties
- Observation is consistent with no enhanced di-Higgs production hypothesis.

au had au had SR

ggF HH \rightarrow bb $\gamma \gamma$

36.1 fb⁻¹ JHEP 11 (2018) 40

- Feature: Low background
- Two categories for low mass and high mass regions
 - Loose selection: (sub-)leading jet pT > 40(25) GeV used for κ_{λ} analysis and resonances with m_X < 500 GeV.
 - **Tight selection**: (sub-)leading jet $p_T > 100(30)$ GeV used for $m_X > 500$ GeV.
- Background: single higgs (MC), continuum $m_{\gamma \gamma}$ (data driven)
- Uncertainty: dominated by statistical uncertainties
- Observation is consistent with no enhanced di-Higgs production hypothesis.

Data in loose SR

Results of the ggF combination 1906.02025 ~Interpretation on non-resonant signal~

Simultaneous fit to data for cross-section of the signal process and nuisance parameters modeling statistical and systematic uncertainties, using the CLs approach.

8/14

Results of the ggF combination ^{1906.02025} ~Interpretation on resonant signal~

ggF HH→bblvlv

- New channel in ATLAS addressing the 2I decay of HHightarrowbbWW*/ZZ*/ au au
- The analysis relies on a **DNN classifier** to distinguish the **signal** from the main backgrounds: Top, $Z \rightarrow e^+e^-/\mu^+\mu^-$, and $Z \rightarrow \tau^+\tau^-$.
- The four outputs of the DNN, are combined: $d_{HH} = \ln \left(\frac{p_{HH}}{p_{Top} + p_{Z \to ll} + p_{Z \to \tau\tau}} \right)$
- Observation is consistent with no enhanced di-Higgs production hypothesis.
- The factor 10 improvement on previous bbWW result of upper limit at $\kappa \lambda = 1$.

95% CL upper limit at $k_{\lambda} = 1$ (SM)

	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
$\sigma (gg \rightarrow HH)$ [pb]	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma (gg \to HH) / \sigma^{\text{SM}} (gg \to HH)$	14	20	29	43	62	40

10/14

New! Full Run2

•

VBF HH→4b

- New VBF HH analysis in LHC, using the full Run-2 dataset
 - The VBF jet selections are added to di-Higgs selection from ggF resolved analysis.
 - The invariant mass of 4b is reconstructed.

- The b-jet energy regression based on BDT is implemented to account for energy loss due to:
 - Neutrinos in b-jets due to semi-leptonic B decays
 - Soft particles result in out-of-cone leakage

Background: ~90% Multijet, ~10% ttbar

– **Data-driven** estimation in CRs with reduced b-tagging.

•

VBF HH→4b: Results

<u>ATLAS-</u> <u>CONF-2019-030</u>

- No significant deviation observed. Local 1.5 σ excess at ~550 GeV is largest deviation and set limits near expected values.
 - World's first limit on VVHH coupling strength: $c_{2V} < -1.02$ and $2.71 < c_{2V}$ is excluded with 95% CLs.

HL-LHC prospects on SM non-resonant

- HL-LHC will deliver ~3000 fb⁻¹ at 14 TeV by late 2030's
- Latest HL-LHC projections published in the Yellow Report by a joint ATLAS+CMS+Theory effort.
 - HH→bbbb and HH→bb $\tau \tau$: Extrapolation from Run2 analysis
 - HH→bb r r: Dedicated analysis with parametric smearing based on upgraded detector performance
 - Systematics are estimated with expected potential gains in technique
- HH combination
 - No correlation considered (shown to have negligible impact).
 - Signal (SM) significance: 4 σ expected for ATLAS+CMS
 - κ_{λ} measurement (assuming SM value):
 - 0.1 < κ_λ < 2.3 [95% CLs]

	Statistica	al-only	Statistical + Systematic			
	ATLAS	CMS	ATLA	S CMS	5	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95		
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	1.4	
$HH ightarrow b \bar{b} \gamma \gamma$	2.1	1.8	2.0	1.8	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56		
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37		
combined	3.5	2.8	3.0	2.6		
	Comb	ined		Combined		
	4.5	5		4.0		

1902.00134

13/14

Summary

- HH studies can access the SM higgs couplings and BSM physics.
- A combination of all 2015-16 ATLAS analyses and two new analyses performed on the full LHC-Run2 dataset (bbl ν l ν and VBF HH \rightarrow 4b) have been presented.
 - No observation for enhanced di-Higgs production has been found up to now.
 - The most stringent constraint on di-Higgs production cross-section (SM) is set and is 6.9(10) x σ^{SM}_{ggF} obs (exp).
 - The first constraint on VVHH coupling strength has been set:

C2v < -1.02 and 2.71 < C2v is excluded with 95% CLs.

- Limits on heavy spin-0/2 particles are set
- Stay tuned for more & more results with the full Run-2 dataset.
- The HL-LHC prospects at 3000 fb⁻¹ at 14 TeV shows discovery significance of 4σ and κ a measurement of 0.1 < κ a < 2.3 by ATLA+CMS. New channels, ideas for physics analysis, and improved detector performances can improve the measurement.