Neutrino Physics Session ICNFP 2019 - Kolymbari, Crete

Status of the SoLid experiment at the BR2 reactor

SoLid

Simon Vercaemer Ianthe Michiels (UGent) for the SoLid Collaboration

1

Outline

The SoLid experiment

Experimental program Reactor site Detector technology

Data reconstruction and BGs

Energy scale calibration Data reconstruction Main backgrounds Background data/MC

Antineutrino detection

IBD selection cuts Predicted S:B Analysis status

SoLid goals

Kopp et al., JHEP 1305 (2013)

MOTIVATION

- Probe the reactor anomaly deficit and search for oscillation at very short baseline: L ≃ 10 m ↔ Δm² ≃ 1 eV²
- Resolve discussion on spectral features observed by previous reactor experiments

SoLid goals

MOTIVATION

- Probe the reactor anomaly deficit and search for oscillation at very short baseline: L ≃ 10 m ↔ Δm² ≃ 1 eV²
- Resolve discussion on spectral features observed by previous reactor experiments

APPROACH

- Using plastic scintillator with linear energy response
- Use of segmentation to allow for topological event information (BG reduction) and measurement of potential oscillations in E and L
- Using a compact core with highly enriched ²³⁵U fuel

BR2 reactor site

- Compact research reactor at SCK•CEN: Ø 50 cm - H 90 cm
- Highly enriched fuel: **93.5%** ²³⁵U
- Operating power at **50-80 MW**
- 6 cycles of ~1 month each:
 ~ 150 days per year
- SoLid baseline at 6-9 m from core
- At ground level \rightarrow low overburden

Simon Vercaemer - ICNFP 2019

SoLid detector technology

- Stacked **PVT** cubes of (5x5x5) cm³ for electromagnetic signal (ES) detection
- Each covered with two ⁶LiF:ZnS(Ag) screens for **nuclear signal** (NS) detection
- Wrapped in reflective Tyvek paper
- X/Y wavelength shifting fibre arrays, read out by SiPMs
- **Pulse shape discrimination** \rightarrow
- Time and spatial event signature \rightarrow

SoLid Phase I detector

Phase1 module = 10 full planes

- Planes are filled with 16x16 detection cells
- Planes are grouped per 10 in a module
- 5 movable modules on rail system
- → 1.6 tonnes sensitive mass
- Closest approach to core of 6.2m
- Housed in container, cooled to 10°C
- Instrumented with remotely operated calibration system (CROSS)
- Passive shielding (50 cm):
 - Sides: water bricks
 - Roof: HDPE slabs

SoLid Phase I detector

0. Different trigger types for first selection

- → Threshold: XY coincidence > 2 MeV
- → **Neutron:** *PSD* algorithm for neutrons
- → Random: Full detector readout at 1 Hz

1. Time clustering to group signals from different fibres

2. Pulse shape discrimination used in offline reconstruction to divide signals in 3 streams: NS - ES - Tracks

3. Make correlations between prompt ES and delayed NS signals

20

Neutron Trigger Parameter - 1.8 OV, 1 PA+ peaks

25

Number of Peaks

Neutrons (AmBe, single plane) All Triggers (Physics) Trigger Default

30

35

NS Tagged (Physics) Muon Tagged (Physics)

30

25

20

Rate (Hz)

10

5

0. Different trigger types for first selection Threshold: XY coincidence > 2 MeV Neutron: PSD algorithm for neutrons Random: Full detector readout at 1 Hz

1. Time clustering to group signals from different fibres

2. Pulse shape discrimination used in offline reconstruction to divide signals in 3 streams: NS - ES - Tracks

3. Make correlations between prompt ES and delayed NS signals

NS selection cuts

0. Different trigger types for first selection Threshold: XY coincidence > 2 MeV Neutron: PSD algorithm for neutrons Random: Full detector readout at 1 Hz

1. Time clustering to group signals from different fibres

2. Offline reconstruction uses cluster lengths and integral/amplitude ratio to divide signals in 3 streams: NS - ES - Tracks

3. Make correlations between prompt ES and delayed NS signals

Amplitude [ADC]

0. Different trigger types for first selection Threshold: XY coincidence > 2 MeV Neutron: PSD algorithm for neutrons Random: Full detector readout at 1 Hz

1. Time clustering to group signals from different fibres

2. Offline reconstruction uses cluster lengths and integral/amplitude ratio to divide signals in 3 streams: NS - ES - Tracks

3. Make correlations between prompt ES and delayed NS signals

Prompt-Delayed Coincidence Candidate - 2017/12/05, 00:07:26

Main backgrounds

Fast Neutrons

Muon spallation and/or cosmic ray air showers create fast neutrons

- → neutron recoil mimics 'prompt ES'
- → neutron capture is 'delayed NS'

BiPo

Contamination from ${}^{238}\text{U}/{}^{230}\text{Th}$ series in ${}^{6}\text{LiF:ZnS(Ag)}$ screens and in the air: ${}^{214}\text{Bi} \rightarrow {}^{214}\text{Po} \rightarrow {}^{210}\text{Pb}$, with $T_{1/2}(\text{Po}) = 164 \ \mu\text{s}$

→ e⁻ from ²¹⁴Bi mimics 'prompt ES'

→ a from ²¹⁴Po mimics 'delayed NS'

Background MC: Fast neutrons

Combined model fit of spallation (42%) and atmospheric neutrons (58%), matches data very well in the ΔT and ΔR distributions.

Background MC: BiPo

MC/Data comparisons of ΔT, ΔR and prompt E distributions show BiPo background is well understood.

IBD selection cuts

0.2

0.0

ES1

3. Difference in energy balance between "max E" (ES1) cubes

ES1

0.2

ES1 energy (MeV)

Predicted S:B

- Current cut menu results in IBD efficiency of ~15% (WIP!)
- Signal based on MC calculated number of 1087 IBD interactions/day
- Bg based on 7.28 days of reactor off data

Analysis status

Good progress in developing a precise reconstruction and first IBD selection.

The data analysis is ongoing and focusses on topological information for background reduction.

Expect further improvement on S:B figure with lower energy threshold.

Further developing the oscillation and '5 MeV bump` analysis.

Thank you for your attention.

Does anyone have any questions?

simon.vercaemer@uantwerpen.be

Credits

The members of the SoLid Collaboration and their institutes.

BACK-UP SLIDES

Simon Vercaemer - ICNFP 2019

Subject	arXiv	Journal
SoLid detector technology	1703.01683	2017 JINST 12 P04024
SM1 prototype performance	1802.02884	2018 JINST 13 P05005
Light-yield optimisation	1806.02461	2018 JINST 13 P09005
SoLid quality assurance	1811.05244	2019 JINST 14 P02014
SoLid readout system	1812.05425	Submitted to JINST

SoLid Publications

Detector design

Detector energy response

Energy reconstruction and MC simulation validated against calibration runs with ²²Na (work in progress).

Energy scale stability

- Based on muon dE/dx distribution (average over full detector)
- Shows good stability of energy scale over data taking period

IBD selection cuts

- Muon and NS multiplicity veto
- Δx , Δy , Δz , Δr topological cuts
- 1.5 MeV < prompt E < 20 MeV
- Energy balance + BiPonisher cut
- Fiducial cut on outer layer
- 0 < Δt < 150 µs

BiPonisher