$t\bar{t} + \gamma / Z / W$

Measurements of $t\bar{t}$ pairs produced in association with electroweak gauge bosons using the ATLAS detector

Paul Glaysher (DESY), on behalf of the ATLAS collaboration

28 August 2019 ICNFP 2019, Crete

Introduction

> Large statistics and centre-of-mass energy allows us to explore the phase space of $t\bar{t}$ associated production with electroweak bosons at the LHC

Cross section measurements of rare production modes at 13 TeV, with 36 fb⁻¹ data are shown:

- $t\bar{t} + W/Z$
- $t\bar{t} + \gamma$

See talk by B. Stelzer on $t\bar{t} + H$

- > BSM models could enhance the $t\bar{t} + W/Z$ cross section
- > Direct probe of tZ coupling in FSR
- Large irreducible background for searches including
 - Two-Higgs-Doublet models <u>ATL-PHYS-PUB-2018-027</u>
 - > SUSY stop search <u>JHEP 06 (2018) 108</u>
 - Observation of ttH(H->multi-lepton final states)
 Phys. Rev. D 97 (2018) 072003

Measurement divided into regions defined by lepton (ℓ) multiplicity and charge to enhance sensitivity

Process	$t\bar{t}$ decay	Boson decay	Channel
$t \bar{t} W$	$(\ell^{\pm}\nu b)(q\bar{q}b) (\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^{\pm} u$ $\ell^{\pm} u$	SS dilepton Trilepton
$tar{t}Z$	$(q\bar{q}b)(q\bar{q}b) (\ell^{\pm}\nu b)(q\bar{q}b) (\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$ \begin{array}{c} \ell^+\ell^-\\ \ell^+\ell^-\\ \ell^+\ell^- \end{array} $	OS dilepton Trilepton Tetralepton

Same Sign (SS) or Opposite Sign (OS) 2ℓ . Here ℓ = electron or muon.

Yields low statistics, high purity selection.

- > To enhance ttW and ttZ signals, the 2ℓ , 3ℓ or 4ℓ selections are split by:
 - Lepton charge, lepton flavour, ℓℓ invariant mass, numbers of jets and btagged jets

Examples:

- fake lepton background from hadron decays, photon conversions or misidentified jets
- Reject by tight isolation and a multivariate discriminate to distinguish prompt from non-prompt leptons

$tar{t}+\mathbf{Z}$ yields

- fully hadronic top decays
- same flavour (SF) ℓ pair in M_Z window
- a BDT rejects larger tt and Z+jets bkg.

- semi-leptonic top decays
- one OS SF ℓ pair in M_Z window
- WZ+jets normalisation determined in Control Region, defined by b-jet veto

- fully leptonic final state
- 2 OS ℓ pairs, one forms Z candidate
- Flavour of 2nd OS ℓ pair and #b-jets define regions
- ZZ background rejected in SF by high E_T^{miss} selection and M_Z veto, ZZ normalisation from CR

t ar t + W yields

12 regions in 2ℓ SS

- Select SS ℓ pair with M_Z veto
- Invert $\mathsf{E}_\mathsf{T}^\mathsf{miss}$ and $\Sigma_{\mathsf{jets},\ell}(p_T)$ conditions for Fake Lepton CRs
- Exploit charge asymmetric ttW signal (preference for positive) over charge symmetric backgrounds.
- misidentify electron charge leads to Charge-flips background

4 regions in 3ℓ

- Veto OS SF ℓ pair in M_Z window
- Require 2 or 3 jets.
- background from ttZ requires simultaneous measurement of $\sigma_{\rm ttZ}$ and $\sigma_{\rm ttW}$

> $\sigma_{\rm ttZ}$ and $\sigma_{\rm ttW}$ are evaluated simultaneously over all channels in a binned profile likelihood fit

$$\begin{split} &\sigma_{\text{tf}}z = 0.95 \pm 0.08_{\text{stat.}} \pm 0.10_{\text{syst.}}\,pb = 0.95 \pm 0.13\,\,pb \\ &\sigma_{\text{tf}}w = 0.87 \pm 0.13_{\text{stat.}} \pm 0.14_{\text{syst.}}\,pb = 0.87 \pm 0.19\,\,pb \end{split}$$

Excess over background only hypothesis:

- ttZ: observed and expected >5σ
- ttW: 4.3σ obs., 3.4σ exp.

WZ, ZZ and Z+jets backgrounds all compatible with SM.

The limiting systematic uncertainties arise from the signal and background modelling.

$t\bar{t} + W/Z$ BSM interpretation

- > Effective field theory (EFT) provides model independent parameterisation of deviations from the SM. $\sigma_{\text{tot},i} = \sigma_{\text{SM}} + \frac{C_i}{(\Lambda/1\text{TeV})^2} \sigma_i^{(1)} + \frac{C_i^2}{(\Lambda/1\text{TeV})^4} \sigma_{ii}^{(2)}$
- > 5 additional operators (\mathcal{O}_i) and corresponding coefficients on σ_{ttZ} (C_i) that are sensitive to the ttZ vertex are considered within a 6-dimension EFT
- > $\sigma_i^{(1)}$ and $\sigma_{ii}^{(2)}$ from NLO MG5_aMC+Py8
- > EFT parameters are evaluated in a fit to ttZ rich regions, to determine the best-fit values of C_i .

Operator	Expression
$O_{\phi Q}^{(3)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\phi)(\bar{Q}\gamma^{\mu}\tau^{I}Q)$
$O_{m{\phi}m{Q}}^{(1)}$	$(\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (\bar{Q} \gamma^\mu Q)$
$O_{\phi t}$	$(\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (\bar{t} \gamma^\mu t)$
O_{tW}	$(ar{Q}\sigma^{\mu u} au^I t) ilde{\phi}W^I_{\mu u}$
O_{tB}	$(ar{Q}\sigma^{\mu u}t) ilde{\phi}B_{\mu u}$

Measured constraints represent a notable improvement over previous findings:

Coefficients	$\mathcal{C}_{\phi Q}^{(3)}/\Lambda^2$	$\mathcal{C}_{\phi t}/\Lambda^2$	$\mathcal{C}_{tB}/\Lambda^2$	$\mathcal{C}_{tW}/\Lambda^2$
Previous indirect constraints at 68% CL Previous direct constraints at 95% CL	$\begin{bmatrix} -4.7,\ 0.7 \\ [-1.3,\ 1.3] \end{bmatrix}$	$[-0.1, 3.7] \\ [-9.7, 8.3]$	$[-0.5, 10] \\ [-6.9, 4.6]$	$[-1.6, 0.8] \\ [-0.2, 0.7]$
Expected limit at 68% CL Expected limit at 95% CL Observed limit at 68% CL Observed limit at 95% CL		$ \begin{bmatrix} -3.8, 2.7 \\ [-23, 4.9] \\ [-2.0, 3.5] \\ [-25, 5.5] \end{bmatrix} $		[-1.8, 1.9] [-2.6, 2.6] [-2.2, 2.1] [-2.9, 2.9]
Expected limit at 68% CL (linear) Expected limit at 95% CL (linear) Observed limit at 68% CL (linear) Observed limit at 95% CL (linear)	[-1.9, 2.0] [-3.7, 4.0] [-1.0, 2.9] [-2.9, 4.9]	[-3.0, 3.2] [-5.8, 6.3] [-1.8, 4.4] [-4.8, 7.5]	- - - -	- - - -

$t\bar{t} + \gamma$ motivation

- > $t\bar{t}$ + γ inclusive and differential cross section measurements
- > can probe electroweak t γ couplings
 - Deviation in pT spectrum could hint at new physics, e.g. anomalous dipole moments of the top quark
 - > Differential distributions sensitive to $t\bar{t}$ spin correlation and charge asymmetry
- > Constrain EFT models
- > Selection optimised to enhance top-radiated γ , but measurement includes all sources
 - > large angular distance between γ and lepton to cut FSR

${f tar t}+\gamma$ overview

- Considers Semi-leptonic and Di-leptonic tt decays
- > Events selected using MVA
- > Inclusive cross section from likelihood fit
- Fiducial differential cross sections are measured in the same fiducial volume without a likelihood fit, as a function of:

- > Photon transverse momentum $p_T(\gamma)$ and pseudorapidity $\eta(\gamma)$,
- > the angular difference the photon and nearest lepton $\Delta R(\gamma, \mathcal{E})$
- > the pseudorapidity difference $\Delta\eta(\ell,\ell)$ and opening angle $\Delta\phi(\ell,\ell)$ between two leptons

$t\bar{t}+\gamma$ backgrounds

- Challenging estimate of 'fake' backgrounds, by object misidentification
- Contribution of fake sources cannot be estimated from Monte Carlo
 - Data-driven (or semi data-driven) methods needed

Hadronic Fake Photons and Electronic Fake Photons

- Main source is tt when a final state jet is reconstructed as a photon, using ABCD method.
- Separation from prompt photon through neural network that feeds into final discriminator
- classification is achieved through shower shape variables and energy leakage fraction in the calorimeters

$t ar t + \gamma$ Fiducial inclusive cross section

- > $t\bar{t} + \gamma$ cross section is obtained in likelihood fit of ELD spectrum in both channels
- > Corrected to a fiducial volume
 - > $p_T(\gamma)$ >20 GeV, $|\eta(\gamma)|$ <2.37
 - Isolated γ

- Split by channels show consistent results
- > Combined signal strength $\mu = 1.06 \pm 0.06$, in good agreement with the SM @NLO

$$\sigma_{\rm fid}^{\rm SL} = 521 \pm 9({\rm stat.}) \pm 41({\rm sys.})$$
 fb and $\sigma_{\rm fid}^{\rm DL} = 69 \pm 3({\rm stat.}) \pm 4({\rm sys.})$ fb,

$t\bar{t} + \gamma$ Fiducial differential cross sections

- > Iterative Bayesian Unfolding of differential distributions to fiducial volume, after background subtraction.
- Interesting examples are shown:

- Good agreement with $t\bar{t} + \gamma$ MG5_aMC@LO Py8
- (left) $p_T(\gamma)$ found to be softer in NLO tt PowHegPy8 (γ from parton shower).
- (right) small trend at large $\Delta\phi(\ell,\ell)$, as seen in tt events <u>arXiv:1903.07570</u>

Conclusion

- > The latest measurements from ATLAS on production modes associated with a top quark pair were presented for the 36 fb⁻¹, 13 TeV dataset
 - tt+W and tt+Z inclusive cross sections were found to be consistent with the SM predictions and a BSM interpretation for tt+Z was performed
 - > inclusive and differential, fiducial cross section measurements of tt+y were also shown to be consistent with SM predictions
- Higher sensitivity over previous results not just due to increase in data statistics
 - Improvements also due to better signal/background separation through multivariate techniques and refined data-driven techniques to estimate fake backgrounds

Backup

> $\sigma_{\rm ttZ}$ and $\sigma_{\rm ttW}$ are evaluated simultaneously over all channels in a binned profile likelihood fit

$$\begin{split} &\sigma_{\text{tf}\,\text{Z}}\!=0.95\pm0.08_{\text{stat.}}\!\pm0.10_{\text{syst.}}\,pb=0.95\pm0.13\,\,pb\\ &\sigma_{\text{tf}\,\text{W}}\!=0.87\pm0.13_{\text{stat.}}\!\pm0.14_{\text{syst.}}\,pb=0.87\pm0.19\,\,pb \end{split}$$

Signal strength μ as ratio to SM predictions:

Fit configuration	$\mu_{t\bar{t}Z}$	$\mu_{tar{t}W}$	
Combined	1.08 ± 0.14	1.44 ± 0.32	
2ℓ-OS	0.73 ± 0.28	-	
$3\ell t\bar{t}Z$	1.08 ± 0.18	-	
2ℓ -SS and $3\ell t\bar{t}W$	-	1.41 ± 0.33	
4ℓ	1.21 ± 0.29	-	

SM NLO calculation includes renormalisation and factorisation scale uncertainties.

