Associated quarkonia production:

- J/ψ and W^\pm boson at $\sqrt{s} = 7$ TeV – JHEP 1404 (2014) 172
- $\psi(2S)$ and $X(3872)$ production at $\sqrt{s} = 8$ TeV – JHEP 1701 (2017) 117
Motivation:

- Probes the production mechanisms of quarkonium (is not fully understood in hadron collisions)
- New tests of QCD at the perturbative/non-perturbative boundary;
- Further constraints on the contributions from colour-singlet (CS) and colour-octet (CO) production processes, and their properties;
- Two principal possibilities to produce two objects in a pp collision:
 - Single Parton Scattering (SPS) – the two objects are produced via a subprocess in a single interaction of two partons.
 - Double Parton Scattering (DPS) – simultaneous interaction of two pairs of partons, each producing one of the two objects, assumed to be uncorrelated.
The first observation of the production of prompt $J/\psi + W^\pm$ events in hadronic collisions:

- Use 4.5 fb$^{-1}$ @ 7 TeV data;
- $J/\psi \rightarrow \mu^+\mu^-$ and $W^\pm \rightarrow \mu^\pm\nu\mu^-$ at least three identified muons;
- Additional muon must combine with the events missing transverse momentum (E_T^{miss});
- The W^\pm boson transverse mass $m_T = \sqrt{2p_T(\mu)E_T^{miss}(1 - \cos(\phi_\mu - \phi_\nu))}$
- $27.4^{+7.5}_{-6.5}$ prompt $J/\psi + W^\pm$ events were observed with a statistical significance of 5.1σ.

<table>
<thead>
<tr>
<th>Yields from two-dimensional fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
</tr>
<tr>
<td>Prompt J/ψ</td>
</tr>
<tr>
<td>Non-prompt J/ψ</td>
</tr>
<tr>
<td>Prompt background</td>
</tr>
<tr>
<td>Non-prompt background</td>
</tr>
<tr>
<td>p-value</td>
</tr>
</tbody>
</table>

(*) of which 1.8 ± 0.2 originate from pileup
Associated production of $J/\psi + W^\pm$: double parton scattering:

- J/ψ and W^\pm candidates originate from two different parton interactions in the same pp collision.
- The probability is $P_{J/\psi|W^\pm} = \sigma_{J/\psi}/\sigma_{\text{eff}}$
 - σ_{eff} is assumed to be universal across processes and energy scales.
 - $\sigma_{\text{eff}} = 15 \pm 3(\text{stat.})_{-3}^{+5}(\text{syst.}) \text{ mb} - \text{New J. Phys. 15 (2013) 033038}$
- The total number of DPS events in the signal yield is estimated to be 10.8 ± 4.2 events.
- A uniform distribution in the azimuthal angle between the W^\pm and J/ψ momenta is expected from DPS, under the assumption that the two interactions are independent.
- Peak near π and a tail extending towards zero in data distribution \implies SPS and DPS events are present;
Associated production of $J/\psi + W^{\pm}$: cross-section ratios

Fiducial – production cross-section ratio in the J/ψ fiducial region
\[R_{J/\psi}^{\text{fid}} = (51 \pm 13 \pm 4) \times 10^{-8} \]

Inclusive – after correction for J/ψ acceptance
\[R_{J/\psi}^{\text{incl}} = (126 \pm 32 \pm 9^{+11}_{-25}) \times 10^{-8} \]

DPS-subtracted – after subtraction of the double parton scattering component
\[R_{J/\psi}^{\text{DPS sub}} = (78 \pm 32 \pm 22^{+41}_{-25}) \times 10^{-8} \]

Predictions – LO CS: $(10 - 32) \times 10^{-8}$, LO CO: $(4.6 - 6.2) \times 10^{-8}$

SPS is dominant at low J/ψ transverse momenta

DPS estimate accounts for a large fraction of the observed signal ($\sim 40\%$)

CS mechanism is expected to be the dominant contribution to the cross section

<table>
<thead>
<tr>
<th>$y_{J/\psi} \times p_T^{J/\psi}$ Bin</th>
<th>Inclusive (SPS+DPS) ratio $dR_{J/\psi}^{\text{incl}}/dp_T$ ($\times 10^{-6}$)</th>
<th>DPS ($\times 10^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 2.1) \times (0, 10)$</td>
<td>$0.56 \pm 0.16 \text{ (stat)} \pm 0.04 \text{ (syst)}$</td>
<td>0.13 ± 0.10</td>
</tr>
<tr>
<td>$(0, 2.1) \times (10, 14)$</td>
<td>$0.070 \pm 0.030 \text{ (stat)} \pm 0.006 \text{ (syst)}$</td>
<td>0.04 ± 0.03</td>
</tr>
<tr>
<td>$(0, 2.1) \times (14, 18)$</td>
<td>$0.011 \pm 0.017 \text{ (stat)} \pm 0.001 \text{ (syst)}$</td>
<td>0.007 ± 0.004</td>
</tr>
<tr>
<td>$(0, 2.1) \times (18, 30)$</td>
<td>$0.0092 \pm 0.0067 \text{ (stat)} \pm 0.0006 \text{ (syst)}$</td>
<td>0.0009 ± 0.0006</td>
</tr>
</tbody>
</table>

$ICNFP$ 2019, 21-29 August 2019
Tatiana Lyubushkina JINR
The first observation and measurement of associated Z and J/ψ production

- Use 20.3 fb$^{-1}$ @ 8 TeV data;
- $J/\psi \rightarrow \mu^+\mu^-$ and $Z \rightarrow \mu^+\mu^-$, $Z \rightarrow e^+e^-$ – two pairs of leptons with opposite charge; regions

Table:

| Process | $|y_{J/\psi}| < 1.0$ | $1.0 < |y_{J/\psi}| < 2.1$ | Total |
|--------------------------|----------------------|-----------------------------|----------------------|
| | Events | From pileup | Events |
| Prompt signal | $24 \pm 6 \pm 2$ | $32 \pm 8 \pm 5$ | $56 \pm 10 \pm 5$ |
| Non-prompt signal | $54 \pm 9 \pm 3$ | $41 \pm 8 \pm 7$ | $95 \pm 12 \pm 8$ |
| Background | $61 \pm 11 \pm 6$ | $77 \pm 13 \pm 7$ | $138 \pm 17 \pm 9$ |

Graphs:

- ATLAS $\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$
Associated production of $J/\psi + Z$: double parton scattering

The probability is $P_{J/\psi|Z} = \sigma_{J/\psi}/\sigma_{\text{eff}}$

- $\sigma_{\text{eff}} = 15 \pm 3(\text{stat.})^{+5}_{-3}(\text{syst.})$ mb – New J. Phys. 15 (2013) 033038
- The total number of DPS events in the signal yield is estimated to be $11.1^{+5.7}_{-5.0}$ for prompt and $5.8^{+2.8}_{-2.6}$ for non-prompt components.
- Both DPS and SPS contributions may be present in the data:
Associated production of $J/\psi + Z$: cross-section ratios

Cross-section ratios:

\[
p_{R_{Z+J/\psi}^{\text{fid}}} = (36.8 \pm 6.7 \pm 2.5) \times 10^{-7}
\]

\[
n_{p_{R_{Z+J/\psi}^{\text{fid}}}} = (65.8 \pm 9.2 \pm 4.2) \times 10^{-7}
\]

\[
p_{R_{Z+J/\psi}^{\text{incl}}} = (63 \pm 13 \pm 5 \pm 10) \times 10^{-7}
\]

\[
n_{p_{R_{Z+J/\psi}^{\text{incl}}}} = (102 \pm 15 \pm 5 \pm 3) \times 10^{-7}
\]

\[
p_{R_{Z+J/\psi}^{\text{DPS sub}}} = (45 \pm 13 \pm 6 \pm 10) \times 10^{-7}
\]

\[
n_{p_{R_{Z+J/\psi}^{\text{DPS sub}}}} = (94 \pm 15 \pm 5 \pm 5) \times 10^{-7}
\]

DPS contributions:

- (29 ± 9)% for prompt production
- (8 ± 2)% for nonprompt production

Prediction:

LO CS $(11.6 \pm 3.2) \times 10^{-8} - (46.2^{+6.0}_{-6.5}) \times 10^{-8}$

LO CO $(25.1^{+3.3}_{-3.5}) \times 10^{-8}$, NLO CO $(86^{+20}_{-18}) \times 10^{-8}$ ⇒ CO should have a higher production rate than CS

Data: expected production rate from CO + CS is lower than the data by a factor of 2 to 5
 "$\psi(2S)$ and $X(3872)$ production

JHEP 01 (2017) 117

- $X(3872)$ was observed by Belle in 2003, later confirmed by others, $J^{PC} = 1^{++}$
- No clear theoretical picture yet
 - Tetraquark (diquark + diquark)
 - Loosely bound $D^0\bar{D}^*0$ molecule
 - $\chi_{c1}(2P)$ state, or the mixture with $D^0\bar{D}^*0$
- ATLAS measurement can help to answer some of the questions
 - Measure in $J/\psi\pi^+\pi^-$ mode, together with well known $\psi(2S)$ state
 - helps to reduce systematics in ratios
 - Use 11.4 fb$^{-1}$ @ 8 TeV data
 - Limit to $|y| < 0.75$ for the best mass resolution
 - $\sim 470k \psi(2S)$ and $\sim 30k X(3872)$
 - Use 4 bins of pseudo proper lifetime to extract prompt/non-prompt components
Effective $X(3872)$ lifetime hypotheses

- **Single lifetime hypothesis**
 - same lifetime for $\psi(2S)$ and $X(3872)$ in each p_T bin
 - effective $X(3872)$ lifetime shorter in low-p_T bins \Rightarrow different production mechanism at low p_T
 - Measure the $X(3872)/\psi(2S)$ non-prompt production cross sections ratio
 \[R_B = \frac{\mathcal{B}(B \to X(3872) + \text{any}) \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any}) \mathcal{B}(\psi(2S) \to J/\psi \pi^+ \pi^-)} \]
 \[R_B^{1L} = (3.95 \pm 0.32(\text{stat.}) \pm 0.08(\text{syst.})) \times 10^{-2} \]

- **Double lifetime hypothesis**: long-lived (LL) and short-lived (SL) components
 - LL $- B^\pm, B^0, B_s, b$-barions; SL $- B_c$
 - τ_{LL} determined from $\psi(2S)$ fits, allowing for some SL contribution
 - τ_{SL} from simulation, varying B_c lifetime
 - Calculate $X(3872)$ fraction from B_c
 \[\frac{\sigma(pp \to B_c + \text{any}) \mathcal{B}(B_c \to X(3872) + \text{any})}{\sigma(pp \to \text{non-prompt} \ X(3872) + \text{any})} = (25 \pm 13(\text{stat.}) \pm 2(\text{syst.}) \pm 5(\text{spin}))\% \]
Prompt production described well by NRQCD
 - $X(3872)$ considered as a mixture of $\chi_{c1}(2P)$ and $D^0\bar{D}^{*0}$ molecule

Non-prompt compared to FONLL calculations
 - Predictions for $\psi(2S)$ recalculated using kinematic template of $X(3872)/\psi(2S)$
 - Factor 4–8 above the data, larger discrepancy at high p_T

Non-prompt production fraction: no p_T dependence, agreement with CMS data
A selection of ATLAS results was presented

- Associated production:
 - production of $J/\psi + W$
 - production of $J/\psi + Z$

- Exotic states: $X(3872)$ measurement

Many interesting results not covered, e.g.

- b hadron pair production at $\sqrt{s} = 8$ TeV – JHEP 1711 (2017) 062
- J/ψ and $\psi(2S)$ production at $\sqrt{s} = 7, 8$ TeV – Eur. Phys. J. C 76 (2016) 283
- D mesons production at $\sqrt{s} = 7$ TeV – Nucl. Phys. B 907 (2016) 717
- Search for resonances in $B_s^0\pi^\pm$ system – Phys. Rev. Lett. 120 (2018) 202007

Full Run-2 dataset is still be fully exploited – waiting for many new results!
Thank you very much!
Backup slides
ATLAS detector and trigger

Entries / 50 MeV

\[\text{Trigger: EF}_{2\mu 4} \text{DiMu, EF}_{2\mu 4} \text{Jpsimumu, EF}_{2\mu 4} \text{Bmumu, EF}_{2\mu 4} \text{Upsimumu, EF}_{\mu 4\mu 6} \text{Jpsimumu, EF}_{\mu 4\mu 6} \text{Bmumu, EF}_{\mu 4\mu 6} \text{Upsimumu, EF}_{\mu 20} \]
\(J/\psi + W^\pm \)

\[\tau = \frac{\vec{L} \cdot p_T^{J/\psi}}{p_T^{J/\psi}} \cdot \frac{m_{\mu^+\mu^-}}{p_T^{J/\psi}} \]

\(R_{J/\psi}^{\text{fid}} = \frac{\text{BR}(J/\psi \to \mu^+\mu^-) \cdot \frac{d\sigma_{\text{fid}}(pp \to W^\pm + J/\psi)}{dy}}{N(W^\pm) \frac{1}{\Delta y} - R_{\text{pileup}}^{\text{fid}}} \)

\(R_{J/\psi}^{\text{incl}} = \frac{\text{BR}(J/\psi \to \mu^+\mu^-) \cdot \frac{d\sigma(pp \to W^\pm + J/\psi)}{dy}}{N^{\text{ec}+\text{ac}}(W^\pm + J/\psi) \frac{1}{\Delta y} - R_{\text{pileup}}} \)

Fiducial phase space: 8.5 < \(p_T^{J/\psi} \) < 30 GeV, \(|y_{J/\psi}| < 2.1\)

\(J/\psi + Z \)

\[\tau := \frac{L_{xy} m_{J/\psi}}{p_T^{J/\psi}} \]

\(R_{Z+J/\psi}^{\text{fid}} = B(J/\psi \to \mu^+\mu^-) \frac{\frac{d\sigma_{\text{fid}}(pp \to Z + J/\psi)}{dy}}{\frac{d\sigma(pp \to Z)}{dy}} \)

\(= \frac{1}{N(Z)} \sum_{\text{pt bins}} [N^{\text{ec}}(Z + J/\psi) - N^{\text{pileup}}_{\text{ec}}], \)

\(R_{Z+J/\psi}^{\text{incl}} = B(J/\psi \to \mu^+\mu^-) \frac{\frac{d\sigma_{\text{incl}}(pp \to Z + J/\psi)}{dy}}{\frac{d\sigma(pp \to Z)}{dy}} \)

\(= \frac{1}{N(Z)} \sum_{\text{pt bins}} [N^{\text{ec}+\text{ac}}(Z + J/\psi) - N^{\text{pileup}}_{\text{ec+ac}}], \)

Fiducial phase space: 8.5 < \(p_T^{J/\psi} \) < 100 GeV, \(|y_{J/\psi}| < 2.1\)
Backgrounds

\[J/\psi + W^\pm \]

- Production of \(W^\pm \) bosons in association with b quarks, subsequent b-hadron decay to \(J/\psi \) rejected using the fit;
- Decays of \(B_c \rightarrow J/\psi \mu \nu \mu X \) – negligible background;
- The production of Z bosons vetoing events where a pairing of muons has an invariant mass within 10 GeV of the Z boson mass;
- Multi-jet production – the \(m_T(W^\pm) \) distribution of signal events is fit to a sum of a multi-jet template and a \(W^\pm \) boson signal template.

\[J/\psi + Z \]

- Background estimation using MC:
 - \(Z \rightarrow \tau \tau \) or \(W \rightarrow \ell \nu \) background;
 - Top quark processes involving \(t\bar{t} \) or single top production;
 - The single-top \(Wt \) process;
 - Diboson (\(WZ, WW \) and \(ZZ \)) production.
- Background estimation using data:
 - Multi-jet production – selecting non-isolated leptons. The \(m_T(Z) \) distribution of signal events is fit to a sum of a multi-jet template and a Z boson signal template.
$X(3872)$

- Data: $-0.3 < \tau < 0.025$ ps (w_0) blue Fit
- Data: $0.025 < \tau < 0.3$ ps (w_1) red Fit $12 < p_T < 16$ GeV
- Data: $0.3 < \tau < 1.5$ ps (w_2) green Fit $|y| < 0.75$
- Data: $1.5 < \tau < 15$ ps (w_3) yellow Fit

ATLAS

$s=8$ TeV, 11.4 fb$^{-1}$

$J/\psi \pi^+\pi^-$ candidates / 3.5 MeV

$m(J/\psi \pi^+\pi^-)$ [GeV]
<table>
<thead>
<tr>
<th>Experiment (energy, final state, year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS ((\sqrt{s} = 8 \text{ TeV}, J/\psi + J/\psi, 2016))</td>
</tr>
<tr>
<td>ATLAS ((\sqrt{s} = 8 \text{ TeV}, Z + J/\psi, 2015))</td>
</tr>
<tr>
<td>ATLAS ((\sqrt{s} = 7 \text{ TeV}, W + 2 \text{ jets}, 2014))</td>
</tr>
<tr>
<td>CDF ((\sqrt{s} = 1.8 \text{ TeV}, W + 2 \text{ jets}, 1997))</td>
</tr>
<tr>
<td>CDF ((\sqrt{s} = 1.8 \text{ TeV}, \gamma + 3 \text{ jets, 1997}))</td>
</tr>
<tr>
<td>DØ ((\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets, 2014}))</td>
</tr>
<tr>
<td>DØ ((\sqrt{s} = 1.96 \text{ TeV}, \gamma + b/c + 2 \text{ jets, 2014}))</td>
</tr>
<tr>
<td>DØ ((\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets, 2010}))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 7 \text{ TeV}, J/\psi + D^+ + D^0, 2012))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 7 \text{ TeV}, J/\psi + D^+, 2012))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 7 \text{ TeV}, J/\psi + D^0, 2012))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 7 \text{ TeV}, J/\psi + D^0, 2015))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 7 \text{ TeV}, J/\psi + \Lambda_c^+, 2012))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 1.96 \text{ TeV}, J/\psi + \Lambda_c^+, 2016))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 1.96 \text{ TeV}, J/\psi + \Upsilon(1S) + \Upsilon(1S), 2014))</td>
</tr>
<tr>
<td>LHCb ((\sqrt{s} = 13 \text{ TeV}, J/\psi + J/\psi, 2017))</td>
</tr>
<tr>
<td>CMS + Lamberts, Shao ((\sqrt{s} = 7 \text{ TeV}, J/\psi + J/\psi, 2014))</td>
</tr>
<tr>
<td>CMS ((\sqrt{s} = 8 \text{ TeV}, \Upsilon(1S) + \Upsilon(1S), 2016))</td>
</tr>
</tbody>
</table>
Studying associated production

- Multiple possibilities to produce two objects A, B in a pp collision
 - Single Parton Scattering (SPS)
 - described by specific process cross-section σ_{AB}^{SPS} – higher-order “real” associated production
 - Double Parton Scattering (DPS)
 - individual process cross-sections σ_A, σ_B
 - effective cross-section σ_{eff} accounting for probability of the two processes to happen in a single pp collision
 \[
 \sigma_{AB} = \sigma_{AB}^{SPS} + \sigma_{AB}^{DPS} = \sigma_{AB}^{SPS} + \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \times \frac{1}{1 + \delta_{AB}}
 \]

- DPS/SPS separation is intrinsically uncertain
 - Limited knowledge of σ_{eff}
 - Higher-order SPS contributions can undermine assumptions
 - Experimentally one can measure N_A, N_B, and N_{AB}, with different efficiencies, lumi etc
 \[
 f_{DPS} = \frac{\sigma_{AB}^{DPS}}{\sigma_{AB}} = \frac{\sigma_A \sigma_B}{\sigma_{AB} \sigma_{\text{eff}}} \times \frac{1}{1 + \delta_{AB}} \sim \frac{1}{\sigma_{\text{eff}}} \times \frac{N_A N_B}{N_{AB}} \times \frac{1}{1 + \delta_{AB}}
 \]