ATLAS results on quarkonia and heavy flavour production

Tatiana Lyubushkina¹ on behalf of ATLAS Collaboration

¹Joint Institute for Nuclear Research

8th International Conference on New Frontiers in Physics Kolymbari, Creta, Greece 21–29 August 2019

- Associated quarkonia production:
 - ► J/ψ and W^{\pm} boson at $\sqrt{s} = 7 \text{ TeV} \text{JHEP} 1404 (2014) 172$
 - ► J/ψ and Z boson at $\sqrt{s} = 8 \text{ TeV} \text{Eur.Phys.J. C 75}$ (2015) 229
- ▶ $\psi(2S)$ and X(3872) production at $\sqrt{s} = 8 \text{ TeV} \text{JHEP } 1701 \ (2017) \ 117 \bigcirc$

Associated production of vector boson with quarkonia

Motivation:

- Probes the production mechanisms of quarkonium (is not fully understood in hadron collisions)
- New tests of QCD at the perturbative/non-perturbative boundary;
- Further constraints on the contributions from colour-singlet (CS) and colour-octet (CO) production processes, and their properties;
- Two principal possibilities to produce two objects in a pp collision:
 - Single Parton Scattering (SPS) the two objects are produced via a subprocess in a single interaction of two partons.
 - Double Parton Scattering (DPS) simultaneous interaction of two pairs of partons, each producing one of the two objects, assumed to be uncorrelated.

Associated production of $J/\psi + W^{\pm}$ JHEP 1404 (2014) 172 C

- The first observation of the production of prompt J/\u03c6 + W<sup>\pm \pm \pm \pm w
 events in hadronic collisions;
 </sup>
 - ▶ Use 4.5 fb⁻¹ @ 7 TeV data;
 - $J/\psi \rightarrow \mu^+\mu^-$ and $W^{\pm} \rightarrow \mu^{\pm}\nu_{\mu}$ at least three identified muons;
 - Additional muon must combine with the events missing transverse momentum (E^{miss}_T)
 - The W^{\pm} boson transverse mass $m_{\rm T} =$
 - $\sqrt{2p_{\mathsf{T}}(\mu)E_{\mathsf{T}}^{\mathsf{miss}}(1-cos(\phi^{\mu}-\phi^{
 u_{\mu}}))}$
 - ► 27.4^{+7.5}_{-6.5} prompt $J/\psi + W^{\pm}$ events were observed with a statistical significance of 5.1σ .

Yields from two-dimensional fit			
Process	Barrel	Endcap	Total
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	$29.2^{+7.5}_{-6.5}(*)$
Non-prompt J/ψ	$27.9^{+6.5}_{-5.8}$	$13.9^{+5.3}_{-4.5}$	$41.8^{+8.4}_{-7.3}$
Prompt background	$20.4^{+5.9}_{-5.1}$	$18.8^{+6.3}_{-5.3}$	$39.2^{+8.6}_{-7.3}$
Non-prompt background	$19.8^{+5.8}_{-4.9}$	$19.2^{+6.1}_{-5.1}$	$39.0_{-7.1}^{+8.4}$
p-value	8.0×10^{-3}	1.4×10^{-6}	$2.1 imes 10^{-7}$
Significance (σ)	2.4	4.7	5.1

(*) of which 1.8 ± 0.2 originate from pileup

ICNFP 2019, 21-29 August 2019

Associated production of $J/\psi + W^{\pm}$: double parton scattering: JHEP 1404 (2014) 172

- ► J/ψ and W^{\pm} candidates originate from two different parton interactions in the same pp collision
- The probability is $P_{J/\psi|W^{\pm}} = \sigma_{J/\psi}/\sigma_{eff}$
 - \blacktriangleright $\sigma_{\rm eff}$ is assumed to be universal across processes and energy scales
 - ► $\sigma_{eff} = 15 \pm 3(stat.)^{+5}_{-3}(syst.)$ mb New J. Phys. 15 (2013) 033038
 - ► The prompt J/ψ cross section from the ATLAS measurement Nucl. Phys. B 850 (2011) 387-444 ^[]
 - ► The total number of DPS events in the signal yield is estimated to be 10.8 ± 4.2 events.
- A uniform distribution in the azimuthal angle between the W^{\pm} and J/ψ momentais expected from DPS, under the assumption that the two interactions are independent.
- Peak near π and a tail extending towards zero in data distribution ⇒ SPS and DPS events are present;

Associated production of $J/\psi + W^{\pm}$: cross-section ratios JHEP 1404 (2014) 172^C

- Fiducial production cross-section ratio in the J/ψ fiducial region $R_{J/\psi}^{fid} = (51 \pm 13 \pm 4) \times 10^{-8}$
- ► Inclusive after correction for J/ψ acceptance $R_{J/\psi}^{incl} = (126 \pm 32 \pm 9^{+41}_{-25}) \times 10^{-8}$
- DPS-subtracted after subtraction of the double parton scattering component
 R_{J/\psi}^{DPS} sub = (78 ± 32 ± 22_{-25}^{+41}) × 10^{-8}
- ▶ Predictions LO CS: (10 32) × 10⁻⁸, LO CO: (4.6 – 6.2) × 10⁻⁸
- SPS is dominant at low J/ψ transverse momenta
- DPS estimate accounts for a large fraction of the observed signal (~ 40%)
- CS mechanism is expected to be the dominant contribution to the cross section

$y_{J/\psi} \times p_{\rm T}^{J/\psi}$ Bin	Inclusive (SPS+DPS) ratio $\mathrm{d}R_{J/\psi}^{\mathrm{incl}}/\mathrm{d}p_{\mathrm{T}}~(\times 10^{-6})$	DPS $(\times 10^{-6})$
$(0, 2.1) \times (8.5, 10)$	$0.56 \pm 0.16(\text{stat}) \pm 0.04(\text{syst}) \stackrel{+0.21}{_{-0.11}}(\text{spin})$	0.13 ± 0.10
$(0, 2.1) \times (10, 14)$	$0.070 \pm 0.039 (stat) \pm 0.006 (syst) ^{+0.019}_{-0.016} (spin)$	0.04 ± 0.03
$(0, 2.1) \times (14, 18)$	$0.011 \pm 0.017 (stat) \pm 0.001 (syst) ^{+0.003}_{-0.002} (spin)$	$0.007 \ \pm 0.004$
$(0, 2.1) \times (18, 30)$	$0.0092{\pm}0.0067({\rm stat}){\pm}0.0006({\rm syst})^{+0.0012}_{-0.0013}({\rm spin})$	$0.0009 {\pm} 0.0006$

Associated production of $J/\psi + Z$

Eur.Phys.J. C 75 (2015) 229 🗹

- The first observation and measurement of associated Z and J/ψ production
 - ► Use 20.3 fb⁻¹ @ 8 TeV data;
 - J/ψ → μ⁺μ[−] and Z → μ⁺μ[−], Z → e⁺e[−]
 − two pairs of leptons with opposite charge; regions)

Associated production of $J/\psi + Z$: double parton scattering Eur.Phys.J. C 75 (2015) 229

- The probability is $P_{J/\psi|Z} = \sigma_{J/\psi}/\sigma_{eff}$
 - $\sigma_{eff} = 15 \pm 3(stat.)^{+5}_{-3}(syst.)$ mb New J. Phys. 15 (2013) 033038
 - The total number of *DPS* events in the signal yield is estimated to be $11.1^{+5.7}_{-5.0}$ for prompt and $5.8^{+2.8}_{-2.6}$ for non-prompt components.
 - Both DPS and SPS contributions may be present in the data:

8 / 14

Associated production of $J/\psi + Z$: cross-section ratios

- Eur.Phys.J. C 75 (2015) 229 🗹
 - Cross-section ratios:

$${}^{p}R_{Z+J/\psi}^{fid} = (36.8 \pm 6.7 \pm 2.5) \times 10^{-7}$$

$${}^{np}R_{Z+J/\psi}^{fincl} = (65.8 \pm 9.2 \pm 4.2) \times 10^{-7}$$

$${}^{p}R_{Z+J/\psi}^{incl} = (63 \pm 13 \pm 5 \pm 10) \times 10^{-7}$$

$${}^{np}R_{Z+J/\psi}^{incl} = (102 \pm 15 \pm 5 \pm 3) \times 10^{-7}$$

$${}^{p}R_{Z+J/\psi}^{DPS \ sub} = (45 \pm 13 \pm 6 \pm 10) \times 10^{-7}$$

$${}^{np}R_{Z+J/\psi}^{DPS \ sub} = (94 \pm 15 \pm 5 \pm 5) \times 10^{-7}$$

- DPS contributions:
 - $(29 \pm 9)\%$ for prompt production
 - $(8 \pm 2)\%$ for nonprompt production
- Prediction:

 $\begin{array}{l} \mbox{LO CS } (11.6\pm3.2)\times10^{-8}-(46.2^{+6.0}_{-6.5})\times10^{-8}\\ \mbox{LO CO } (25.1^{+3.3}_{-3.5})\times10^{-8},\\ \mbox{NLO CO } (86^{+20}_{-18})\times10^{-8}\Rightarrow\mbox{CO} \mbox{ should have a}\\ \mbox{higher production rate then } CS \end{array}$

Data: expected production rate from CO + CS is lower than the data by a factor of 2 to 5

ICNFP 2019, 21-29 August 2019

$\psi(2S)$ and X(3872) production JHEP 01 (2017) 117

- ► X(3872) was observed by Belle in 2003, later confirmed by others, J^{PC} = 1⁺⁺
- No clear theoretical picture yet
 - Tetraquark (diquark + diquark)
 - Loosely bound $D^0 \overline{D}^{*0}$ molecule
 - $\chi_{c1}(2P)$ state, or the mixture with $D^0 \overline{D}^{*0}$
- ATLAS measurement can help to answer some of the questions
 - Measure in $J/\psi \pi^+\pi^-$ mode, together with well known $\psi(2S)$ state
 - helps to reduce systematics in ratios
 - Use 11.4 fb⁻¹ @ 8 TeV data
 - Limit to |y| < 0.75 for the best mass resolution
 - ~ 470k $\psi(2S)$ and ~ 30k X(3872)
 - Use 4 bins of pseudo proper lifetime to extract prompt/non-prompt components

Effective X(3872) lifetime hypotheses JHEP 01 (2017) 117

- Single lifetime hypothesis
 - ▶ same lifetime for $\psi(2S)$ and X(3872) in each p_T bin
 - ► effective X(3872) lifetime shorter in low-p_T bins ⇒ different production mechanism at low p_T
 - Measure the X(3872)/\u03c6(2S) non-prompt production cross sections ratio

$$\begin{split} R_B &= \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(25) + \text{any})\mathcal{B}(\psi(25) \to J/\psi\pi^+\pi^-)} \\ R_B^{1L} &= (3.95 \pm 0.32(\text{stat.}) \pm 0.08(\text{syst.})) \times 10^{-2} \end{split}$$

- Double lifetime hypothesis: long-lived (LL) and short-lived (SL) components
 - LL B^{\pm} , B^0 , B_s , b-barions; SL B_c ;
 - τ_{LL} determined from $\psi(2S)$ fits, allowing for some SL contribution
 - τ_{SL} from simulation, varying B_c lifetime
 - Calculate X(3872) fraction from B_c

 $\frac{\sigma(pp \rightarrow B_c + any)\mathcal{B}(B_c \rightarrow X(3872) + any)}{\sigma(pp \rightarrow \text{non-prompt } X(3872) + any)} = (25 \pm 13(\text{stat.}) \pm 2(\text{syst.}) \pm 5(\text{spin}))\%$

X(3872) production cross-section JHEP 01 (2017) 117

- Prompt production described well by NRQCD
 - X(3872) considered as a mixture of $\chi_{c1}(2P)$ and $D^0 \overline{D}^{*0}$ molecule
- Non-prompt compared to FONLL calculations
 - Predictions for $\psi(2S)$ recalculated using kinematic template of $X(3872)/\psi(2S)$
 - Factor 4–8 above the data, larger discrepancy at high $p_{\rm T}$
- Non-prompt production fraction: no p_T dependence, agreement with CMS data

ICNFP 2019, 21-29 August 2019

Tatiana Lyubushkina

Summary

- A selection of ATLAS results was presented
 - Associated production:
 - production of $J/\psi + W$
 - production of $J/\psi + Z$
 - ► Exotic states: X(3872) measurement
- Many interesting results not covered, e.g.
 - ▶ Associated production: prompt J/ψ pairs Eur. Phys. J. C 77 (2017) 76
 - Heavy flavours production: onia production in pPb and PbPb- Eur. Phys. J. C 78 (2018) 171 2
 - ▶ b hadron pair production at $\sqrt{s} = 8 \text{ TeV} \text{JHEP} 1711 (2017) 062 C$
 - ► J/ψ and $\psi(2S)$ production at $\sqrt{s} = 7,8$ TeV Eur. Phys. J. C 76 (2016) 283
 - ▶ D mesons production at $\sqrt{s} = 7 \text{ TeV} \text{Nucl. Phys. B 907 (2016) 717 }$
 - ▶ Search for resonances in $B_s^0 \pi^{\pm}$ system Phys. Rev. Lett. 120 (2018) 202007 ⊂
- Full Run-2 dataset is still be fully exploited waiting for many new results!

Thank you very much!

Backup slides

ATLAS detector and trigger

Definitions

$$\begin{split} J/\psi + W^{\pm} \\ \tau &\equiv \frac{\vec{L} \cdot \vec{p}_{\mathrm{T}}^{J/\psi}}{p_{\mathrm{T}}^{J/\psi}} \cdot \frac{m_{\mu^{+}\mu^{-}}}{p_{\mathrm{T}}^{J/\psi}} \\ R_{J/\psi}^{\mathrm{fid}} &= \frac{\mathrm{BR}(J/\psi \to \mu^{+}\mu^{-})}{\sigma_{\mathrm{fid}}(pp \to W^{\pm})} \cdot \frac{\mathrm{d}\sigma_{\mathrm{fid}}(pp \to W^{\pm} + J/\psi)}{\mathrm{d}y} \\ &= \frac{N^{\mathrm{ec}}(W^{\pm} + J/\psi)}{N(W^{\pm})} \frac{1}{\Delta y} - R_{\mathrm{pileup}}^{\mathrm{fid}}, \\ R_{J/\psi}^{\mathrm{ind}} &= \frac{\mathrm{BR}(J/\psi \to \mu^{+}\mu^{-})}{\sigma_{\mathrm{fid}}(pp \to W^{\pm})} \cdot \frac{\mathrm{d}\sigma(pp \to W^{\pm} + J/\psi)}{\mathrm{d}y} \\ &= \frac{N^{\mathrm{ec}+\infty}(W^{\pm} + J/\psi)}{N(W^{\pm})} \frac{1}{\Delta y} - R_{\mathrm{pileup}}, \end{split}$$

Fiducial phase space: 8.5 $< p_T^{J/\psi} <$ 30 GeV, $|y_{J/\psi}| <$ 2.1

 $J/\psi + Z$

$$\tau := \frac{L_{xy}m^{J/\psi}}{p_{\rm T}^{J/\psi}}$$

$$\begin{split} R^{\rm fid}_{Z+J/\psi} &= \mathcal{B}(J/\psi \to \mu^+ \mu^-) \, \frac{\sigma_{\rm fid}(pp \to Z+J/\psi)}{\sigma_{\rm fid}(pp \to Z)} \\ &= \frac{1}{N(Z)} \sum_{p_{\rm T} \, \rm bins} [N^{\rm ec}(Z+J/\psi) - N^{\rm cc}_{\rm pileup}], \end{split}$$

$$R_{Z+J/\psi}^{\text{incl}} = \mathcal{B}(J/\psi \to \mu^+ \mu^-) \frac{\sigma_{\text{incl}}(pp \to Z + J/\psi)}{\sigma_{\text{ind}}(pp \to Z)}$$
$$= \frac{1}{N(Z)} \sum_{p_T \text{ bins}} [N^{\text{ec+ac}}(Z + J/\psi) - N_{\text{pileap}}^{\text{ec+ac}}],$$

Fiducial phase space: 8.5 $< p_T^{J/\psi} <$ 100 GeV, $|y_{J/\psi}| <$ 2.1

$J/\psi + W^{\pm}$

- Production of W[±] bosons in association with b quarks, subsequent b-hadron decay to J/ψ rejected using the fit;
- Decays of B_c → J/ψµν_µX − negligible background;
- The production of Z bosons vetoing events where a pairing of muons has an invariant mass within 10 GeV of the Z boson mass;
- ► Multi-jet production the m_T(W[±]) distribution of signal events is fit to a sum of a multi-jet template and a W[±] boson signal template.

$J/\psi+Z$

- Background estimation using MC:
 - $Z \rightarrow \tau \tau$ or $W \rightarrow \ell \nu$ background;
 - Top quark processes involving tt or single top production;
 - The single-top Wt process;
 - ▶ Diboson (*WZ*, *WW* and *ZZ*) production.
- Background estimation using data:
 - Multi-jet production selecting non-isolated leptons. The m_T(Z) distribution of signal events is fit to a sum of a multi-jet template and a Z boson signal template.

X(3872) JHEP 01 (2017) 117

Data: -0.3 < τ < 0.025 ps (w₀) — Fit
 Data: 0.025 < τ < 0.3 ps (w₁) — Fit 12 < p₁ < 16 GeV
 Data: 0.3 < τ < 1.5 ps (w₂) — Fit |y| < 0.75

Measurement overview – Eur. Phys. J. C 77 (2017) 76 🔀

CMS ($\sqrt{s} = 8$ TeV, $\Upsilon(1S) + \Upsilon(1S)$, 2016) LHCb ($\sqrt{s} = 13$ TeV, $J/\psi + J/\psi$, 2017) CMS + Lansberg, Shao ($\sqrt{s} = 7$ TeV, $J/\psi + J/\psi$, 2014) ----final state, year) ATLAS ATLAS ($\sqrt{s} = 8$ TeV, $J/\psi + J/\psi$, 2016) HH DØ ($\sqrt{s} = 1.96$ TeV, $J/\psi + J/\psi$, 2014) HOH DØ ($\sqrt{s} = 1.96$ TeV, J/ $\psi + \Upsilon$, 2016) HAH LHCb ($\sqrt{s} = 7\&8$ TeV, $\Upsilon(1S) + D^{0,+}$, 2015) HV4 LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + \Lambda_c^+$, 2012) ┝╋╾╦╾╋ LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + D_{*}^{+}$, 2012) H++++ LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺, 2012) **----**LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + D^0$, 2012) (energy, **----**ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016) CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993) UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991) AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986) т Experiment DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2014) HÅH. DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + b/c + 2$ jets, 2014) **⊢**∿−1 DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010) CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997) нан ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015) CMS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2014) ATLAS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2013) n 5 10 15 20 25 30

 $\sigma_{_{eff}}$ [mb]

ICNFP 2019, 21-29 August 2019

Studying associated production

- ▶ Multiple possibilities to produce two objects A, B in a pp collision
 - Single Parton Scattering (SPS)
 - Double Parton Scattering (DPS)
 - individual process cross-sections σ_A , σ_B
 - effective cross-section $\sigma_{\rm eff}$ accounting for probability of the two processes to happen in a single pp collision

$$\sigma_{AB} = \sigma_{AB}^{\mathsf{SPS}} + \sigma_{AB}^{\mathsf{DPS}} = \sigma_{AB}^{\mathsf{SPS}} + \frac{\sigma_A \sigma_B}{\sigma_{\mathsf{eff}}} \times \frac{1}{1 + \delta_{AB}}$$

- DPS/SPS separation is intrinsically uncertain
 - Limited knowledge of $\sigma_{\rm eff}$
 - Higher-order SPS contributions can undermine assumptions
 - ► Experimentally one can measure N_A , N_B , and N_{AB} , with different efficiencies, lumi etc

$$f_{\rm DPS} = \frac{\sigma_{AB}^{\rm DPS}}{\sigma_{AB}} = \frac{\sigma_A \sigma_B}{\sigma_{AB} \sigma_{\rm eff}} \times \frac{1}{1 + \delta_{AB}} \sim \frac{1}{\sigma_{\rm eff}} \times \frac{N_A N_B}{N_{AB}} \times \frac{1}{1 + \delta_{AB}}$$

ICNFP 2019, 21-29 August 2019

JINR

SPS

DPS

21 / 14