Universal gate design with beamsplitters and phase-shifters
based on 1906.06748

Saygin, Kondratyev, Dyakonov, Mironov, Straupe, Kulik

INR RAS, ITEP, MIPT, ITMP MSU

Crete, OAC, August 28, 2019
Quantum computing

\[\text{Quantum algorithm} = \text{Unitary matrix} \]

Experimental implementations
Quantum computing

\[\text{Quantum algorithm} = \text{Unitary matrix} \]

Quantum code is a matrix element of a Unitary matrix

Experimental implementations
Quantum computing

$$\text{Quantum algorithm} = \text{Unitary matrix}$$

Quantum code is a matrix element of a Unitary matrix.

The Unitary matrix is constructed out of Quantum gates.

Experimental implementations
Quantum computing

\[
\text{Quantum algorithm} = \text{Unitary matrix}
\]

Quantum code is a matrix element of a Unitary matrix

The Unitary matrix is constructed out of Quantum gates

or it is not

Experimental implementations
Quantum computing

\[\text{Quantum algorithm} = \text{Unitary matrix} \]

Quantum code is a matrix element of a Unitary matrix.

The Unitary matrix is constructed out of Quantum gates or it is not.

Experimental implementations

trapped cold atoms or ions
Quantum computing

\[
Quantum \text{ algorithm} = Unitary \text{ matrix}
\]

Quantum code is a matrix element of a Unitary matrix

The Unitary matrix is constructed out of Quantum gates

or it is not

Experimental implementations

- trapped cold atoms or ions
- superconductivity and Bose–Einstein condensate
Quantum computing

\[\text{Quantum algorithm} = \text{Unitary matrix} \]

Quantum code is a matrix element of a Unitary matrix.

The Unitary matrix is constructed out of Quantum gates or it is not

Experimental implementations

trapped cold atoms or ions
superconductivity and Bose-Einstein condensate
quantum dots in a solid body
Quantum computing

\[Quantum \text{ algorithm} = \text{Unitary matrix} \]

Quantum code is a matrix element of a Unitary matrix

The Unitary matrix is constructed out of Quantum gates

or it is not

Experimental implementations

trapped cold atoms or ions

superconductivity and Bose–Einstein condensate

quantum dots in a solid body

Linear optics
Universal programmable linear-optical interferometers
Universal programmable linear-optical interferometers

Versatility and Universality
Universal programmable linear-optical interferometers

Versatility and Universality

(ability to set arbitrary unitary transformation of the input optical modes by tuning the phaseshifting elements inside the interferometer)
Universal programmable linear-optical interferometers

Versatility and Universality

unitary matrix factorization theorem
Universal programmable linear-optical interferometers

Versatility and Universality

unitary matrix factorization theorem

Qubits realized by processing states of different modes of light through linear elements e.g. mirrors, beam splitters and phase shifters
Universal programmable linear-optical interferometers

Versatility and Universality

unitary matrix factorization theorem

Qubits realized by processing states of different modes of light through linear elements e.g. mirrors, beam splitters and phase shifters

balanced beamsplitter
Universal programmable linear-optical interferometers

Versatility and Universality

unitary matrix factorization theorem

Qubits realized by processing states of different modes of light through linear elements e.g. mirrors, beam splitters and phase shifters

balanced beamsplitter
Usual approach is vulnerable to manufacturing imperfections inevitable in any realistic experimental implementation, and the larger the circuit size grows, the more strict the tolerances become.
Usual approach is vulnerable to manufacturing imperfections inevitable in any realistic experimental implementation, and the larger the circuit size grows, the more strict the tolerances become. The overall fidelity may be improved for some transformations by application of an optimization algorithm but the overall universality feature of the interferometer will be inevitably lost.
Usually approach is vulnerable to manufacturing imperfections inevitable in any realistic experimental implementation, and the larger the circuit size grows, the more strict the tolerances become.

The overall fidelity may be improved for some transformations by application of an optimization algorithm but the overall universality feature of the interferometer will be inevitably lost.

We demonstrate a new methodology for the design of the high-dimensional mode transformations, which overcomes this problem.
Beamsplitter

BS(θ,φ)

Tritter

Quarter

Six-mode CNOT gate

Beamsplitter, R = 1/3

Beamsplitter, R = 1/2
2x2 Unitary Matrix: 2 optical modes $SU(2)$
2x2 Unitary Matrix: 2 optical modes $SU(2)$

Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1 \sigma_3}$
2x2 Unitary Matrix: 2 optical modes $SU(2)$

Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1 \sigma_3}$

Beamsplitter: $H = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = (Hadamard) = (Fourier)$
- 2x2 Unitary Matrix: 2 optical modes $SU(2)$

- Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1 \sigma_3}$

- Beamsplitter: $H = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = (\text{Hadamard}) = (\text{Fourier})$

- $U = P_1 H P_2 H P_3$
2x2 Unitary Matrix: 2 optical modes $SU(2)$

Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1 \sigma_3}$

Beamsplitter: $H = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = (\text{Hadamard}) = (\text{Fourier})$

$U = P_1 HP_2 HP_3$

$H \sigma_3 H = \sigma_1$
2x2 Unitary Matrix: 2 optical modes $SU(2)$

Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1 \sigma_3}$

Beamsplitter: $H = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = (\text{Hadamard}) = (\text{Fourier})$

$U = P_1 HP_2 HP_3$

$H \sigma_3 H = \sigma_1$

$U = e^{\phi_1 \sigma_3} e^{\phi_2 \sigma_1} e^{\phi_3 \sigma_3}$
2x2 Unitary Matrix: 2 optical modes $SU(2)$

Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1 \sigma_3}$

Beamsplitter: $H = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = (Hadamard) = (Fourier)$

$U = P_1 H P_2 H P_3$

$H \sigma_3 H = \sigma_1$

$U = e^{\phi_1 \sigma_3} e^{\phi_2 \sigma_1} e^{\phi_3 \sigma_3}$

Euler angles
- 2x2 Unitary Matrix: 2 optical modes $SU(2)$

- Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1 \sigma_3}$

- Beamsplitter: $H = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = (\text{Hadamard}) = (\text{Fourier})$

- $U = P_1 HP_2 HP_3$

- $H \sigma_3 H = \sigma_1$

- $U = e^{\phi_1 \sigma_3} e^{\phi_2 \sigma_1} e^{\phi_3 \sigma_3}$

- Euler angles

- Factorization Theorem
2x2 Unitary Matrix: 2 optical modes $SU(2)$

Phase shifter: $P_1 = \begin{pmatrix} e^{\phi_1} & 0 \\ 0 & e^{-\phi_1} \end{pmatrix} = e^{\phi_1} \sigma_3$

Beamsplitter: $H = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = (\text{Hadamard}) = (\text{Fourier})$

$U = P_1 HP_2 HP_3$

$H\sigma_3 H = \sigma_1$

$U = e^{\phi_1} \sigma_3 e^{\phi_2} \sigma_1 e^{\phi_3} \sigma_3$

Euler angles

Factorization Theorem

Factorization Theorem breaks if H is slightly changed.
3x3 Unitary Matrix: 3 optical modes $SU(3)$
- 3x3 Unitary Matrix: 3 optical modes $SU(3)$
- Standard architecture:
- 3x3 Unitary Matrix: 3 optical modes $SU(3)$
- Standard architecture:
 - 3 $SU(2)$ subgroups generate the full $SU(3)$
- 3x3 Unitary Matrix: 3 optical modes \(SU(3) \)
- Standard architecture:

 3 \(SU(2) \) subgroups generate the full \(SU(3) \)

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
b_{11} & b_{12} & 0 \\
b_{21} & b_{22} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{11} & 0 & c_{13} \\
0 & 1 & 0 \\
c_{31} & 0 & c_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & d_{22} & d_{23} \\
0 & d_{32} & d_{33}
\end{pmatrix}
\]
3x3 Unitary Matrix: 3 optical modes $SU(3)$

Standard architecture:

3 $SU(2)$ subgroups generate the full $SU(3)$

$$
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
b_{11} & b_{12} & 0 \\
b_{21} & b_{22} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{11} & 0 & c_{13} \\
0 & 1 & 0 \\
c_{31} & 0 & c_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & d_{22} & d_{23} \\
0 & d_{32} & d_{33}
\end{pmatrix}
$$

Each $SU(2)$ matrix is made of beamsplitters and phase shifters.
3x3 Unitary Matrix: 3 optical modes $SU(3)$

Standard architecture:

3 $SU(2)$ subgroups generate the full $SU(3)$

$$
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
= \\
\begin{pmatrix}
b_{11} & b_{12} & 0 \\
b_{21} & b_{22} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{11} & 0 & c_{13} \\
0 & 1 & 0 \\
c_{31} & 0 & c_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & d_{22} & d_{23} \\
0 & d_{32} & d_{33}
\end{pmatrix}
$$

Each $SU(2)$ matrix is made of beamsplitters and phase shifters.

concept is proven
3x3 Unitary Matrix: 3 optical modes $SU(3)$

Standard architecture:

3 $SU(2)$ subgroups generate the full $SU(3)$

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix} =
\begin{pmatrix}
b_{11} & b_{12} & 0 \\
b_{21} & b_{22} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{11} & 0 & c_{13} \\
0 & 1 & 0 \\
c_{31} & 0 & c_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & d_{22} & d_{23} \\
0 & d_{32} & d_{33}
\end{pmatrix}
\]

Each $SU(2)$ matrix is made of beamsplitters and phase shifters.

Concept is proven.

Can be generalized to $SU(N)$.
3x3 Unitary Matrix: 3 optical modes $SU(3)$

Standard architecture:

3 $SU(2)$ subgroups generate the full $SU(3)$

$$
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
 b_{11} & b_{12} & 0 \\
 b_{21} & b_{22} & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_{11} & 0 & c_{13} \\
 0 & 1 & 0 \\
 c_{31} & 0 & c_{33}
\end{pmatrix}
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & d_{22} & d_{23} \\
 0 & d_{32} & d_{33}
\end{pmatrix}
$$

Each $SU(2)$ matrix is made of beamsplitters and phase shifters

concept is proven

can be generalized to $SU(N)$

but number of matrices grows quadratically
- 3x3 Unitary Matrix: 3 optical modes $SU(3)$

- Standard architecture:

 3 $SU(2)$ subgroups generate the full $SU(3)$

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
b_{11} & b_{12} & 0 \\
b_{21} & b_{22} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{11} & 0 & c_{13} \\
0 & 1 & 0 \\
c_{31} & 0 & c_{33}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & d_{22} & d_{23} \\
0 & d_{32} & d_{33}
\end{pmatrix}
\]

Each $SU(2)$ matrix is made of beamsplitters and phase shifters

concept is proven

can be generalized to $SU(N)$

but number of matrices grows quadratically

requires balanced beamsplitters
3x3 Unitary Matrix: 3 optical modes $SU(3)$

Standard architecture:

3 $SU(2)$ subgroups generate the full $SU(3)$

$$\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix} =
\begin{pmatrix}
 b_{11} & b_{12} & 0 \\
 b_{21} & b_{22} & 0 \\
 0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
 c_{11} & 0 & c_{13} \\
 0 & 1 & 0 \\
 c_{31} & 0 & c_{33}
\end{pmatrix}\begin{pmatrix}
 1 & 0 & 0 \\
 0 & d_{22} & d_{23} \\
 0 & d_{32} & d_{33}
\end{pmatrix}$$

Each $SU(2)$ matrix is made of beamsplitters and phase shifters

concept is proven

can be generalized to $SU(N)$

but number of matrices grows quadratically

requires balanced beamsplitters

not fault tolerant to fabrication errors
- 3x3 Unitary Matrix: 3 optical modes
- New concept:
3x3 Unitary Matrix: 3 optical modes

New concept:

extremely robust even to quite large fabrication errors
3x3 Unitary Matrix: 3 optical modes

New concept:

- extremely robust even to quite large fabrication errors
- the mode mixing elements may be quite arbitrary mode-coupling elements
3x3 Unitary Matrix: 3 optical modes

New concept:

- extremely robust even to quite large fabrication errors
- the mode mixing elements may be quite arbitrary mode-coupling elements
- the universality is not proven rigorously

Numerical experiments show strong evidence that this architecture is capable of realizing large-scale arbitrary unitary transformations with high fidelity can be generalized to $SU(N)$, number of matrices grows linearly.
3x3 Unitary Matrix: 3 optical modes

New concept:

- extremely robust even to quite large fabrication errors
- the mode mixing elements may be quite arbitrary mode-coupling elements
- the universality is not proven rigorously
- numerical experiments show strong evidence, that this architecture is capable of realizing large-scale arbitrary unitary transformations with high fidelity
3x3 Unitary Matrix: 3 optical modes

New concept:

- extremely robust even to quite large fabrication errors
- the mode mixing elements may be quite arbitrary mode-coupling elements
- the universality is not proven rigorously
- numerical experiments show strong evidence, that this architecture is capable of realizing large-scale arbitrary unitary transformations with high fidelity
- can be generalized to $SU(N)$
- number of matrices grows linearly
$SU(3)$ the new architecture
SU(3) the new architecture

\[U = P_{12} TP_{34} TP_{56} TP_{78} \]
SU(3) the new architecture

\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

Where \(P_{ij} = \begin{pmatrix} \exp(l\phi_i) & 0 & 0 \\ 0 & \exp(l\phi_j) & 0 \\ 0 & 0 & \exp(-l(\phi_i + \phi_j)) \end{pmatrix}, \]
\[SU(3) \text{ the new architecture} \]

\[U = P_{12} T P_{34} T P_{56} T P_{78} \]

Where \(P_{ij} = \begin{pmatrix} \exp(l \phi_i) & 0 & 0 \\ 0 & \exp(l \phi_j) & 0 \\ 0 & 0 & \exp(-l(\phi_i + \phi_j)) \end{pmatrix} \),

\[T = \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w \end{pmatrix}, \quad w = \exp\left(\frac{2\pi i}{3}\right). \]
SU(3) the new architecture

\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

Where \(P_{ij} = \begin{pmatrix} \exp(l \phi_i) & 0 & 0 \\ 0 & \exp(l \phi_j) & 0 \\ 0 & 0 & \exp(-l(\phi_i + \phi_j)) \end{pmatrix}, \]

\[T = \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w \end{pmatrix}, \quad w = \exp\left(\frac{2\pi i}{3}\right). \]
8-dimensional Lie group ↔ 8 parameters (angles) in the design
- 8 dimensional Lie group \leftrightarrow 8 parameters (angles) in the design
- straightforward generalization to higher rank groups:

$$U_N = \underbrace{P \ T \ P \ ... \ P \ T \ P}_{N + 1 \text{ layers}}$$

Generically the parameters are independent but there are special points (submanifolds).
8 dimensional Lie group \leftrightarrow 8 parameters (angles) in the design

- straightforward generalization to higher rank groups:

$$U_N = \underbrace{P \ T \ P \ ... \ P \ T \ P}_N \text{ layers}$$

Each P has $N - 1$ parameters (angles)
8 dimensional Lie group ↔ 8 parameters (angles) in the design

straightforward generalization to higher rank groups:

\[U_N = \underbrace{P \ T \ P \ ... \ P \ T \ P}_{N + 1 \text{ layers}} \]

Each \(P \) has \(N - 1 \) parameters (angles)

\[(N + 1 \text{ layers}) \times (N - 1 \text{ parameters}) = N^2 - 1 = \dim (SU(N))\]
8 dimensional Lie group ↔ 8 parameters (angles) in the design

straightforward generalization to higher rank groups:

\[U_N = \underbrace{P \, T \, P \ldots P \, T \, P}_{N + 1 \text{ layers}} \]

Each \(P \) has \(N - 1 \) parameters (angles)

\[(N + 1 \text{ layers}) \times (N - 1 \text{ parameters}) = N^2 - 1 = \dim (SU(N))\]

Generically the parameters are independent
8 dimensional Lie group ↔ 8 parameters (angles) in the design

straightforward generalization to higher rank groups:

\[U_N = \underbrace{P \ T \ P \ ... \ P \ T \ P} \]
\[\text{N + 1 layers} \]

Each \(P \) has \(N - 1 \) parameters (angles)

\[(N + 1 \text{ layers}) \times (N - 1 \text{ parameters}) = N^2 - 1 = \dim (SU(N)) \]

Generically the parameters are independent

but
8 dimensional Lie group \leftrightarrow 8 parameters (angles) in the design

straightforward generalization to higher rank groups:

$U_N = \underbrace{P \ T \ P \ ... \ P \ T \ P}_{N + 1 \text{ layers}}$

Each P has $N - 1$ parameters (angles)

$(N + 1 \text{ layers}) \times (N - 1 \text{ parameters}) = N^2 - 1 = \dim (SU(N))$

Generically the parameters are independent

but

There are special points (submanifolds).
\[U = P_{12} T P_{34} T P_{56} T P_{78} \]
$U = P_{12} TP_{34} TP_{56} TP_{78}$

let us consider zero ϕ_3 and ϕ_4: $P_{34} = 1$
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5} P_{2+6} TP_{78} = P_{1'} P_{2'} TP_{78} \]
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5 \ 2+6} TP_{78} = P_{1'\ 2'} TP_{78} \]

The resulting matrix is 4-dimensional, not 6 \(\rightarrow \) singular point?
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5} 2+6 TP_{78} = P_{1'2'} TP_{78} \]

The resulting matrix is 4-dimensional, not 6 \(\rightarrow \) singular point?

NO
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5} 2+6 TP_{78} = P_{1'2'} TP_{78} \]

The resulting matrix is 4-dimensional, not 6 \(\rightarrow \) singular point?

NO

the investigation of the manifold structure shows that such points are regular, even flat.
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5} 2+6 TP_{78} = P_{1'2'} TP_{78} \]

The resulting matrix is 4-dimensional, not 6 \(\rightarrow \) singular point?

NO

the investigation of the manifold structure shows that such points are regular, even flat.

metric is singular \(\rightarrow \) Riemann tensor is regular
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5} 2+6 TP_{78} = P_{1'2'} TP_{78} \]

The resulting matrix is 4-dimensional, not 6 \(\rightarrow \) singular point?

NO

the investigation of the manifold structure shows that such points are regular, even flat.

metric is singular \(\rightarrow \) Riemann tensor is regular

Same story in case of \(SU(2) \): Euler angles
$U = P_{12} TP_{34} TP_{56} TP_{78}$

let us consider zero ϕ_3 and ϕ_4: $P_{34} = 1$

$T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5 \ 2+6} TP_{78} = P_{1'2'} TP_{78}$

The resulting matrix is 4-dimensional, not 6 \rightarrow singular point?

NO

the investigation of the manifold structure shows that such points are regular, even flat.

metric is singular \rightarrow Riemann tensor is regular

Same story in case of $SU(2)$: Euler angles

$U = e^{\phi_1} \sigma_3 e^{\phi_2} \sigma_1 e^{\phi_3} \sigma_3 \xrightarrow{\phi_2 = 0} e^{\phi'} \sigma_3$
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

Let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5} 2+6 TP_{78} = P_{1'2'} TP_{78} \]

The resulting matrix is 4-dimensional, not 6 \(\rightarrow \) singular point?

NO

the investigation of the manifold structure shows that such points are regular, even flat.

metric is singular \(\rightarrow \) Riemann tensor is regular

Same story in case of \(SU(2) \): Euler angles

\[U = e^{\phi_1 \sigma_3} e^{\phi_2 \sigma_1} e^{\phi_3 \sigma_3} \quad \xrightarrow{\phi_2=0} \quad e^{\phi' \sigma_3} \]

Even simpler example is \(\theta \) and \(\phi \) angles on the \(S^2 \)
\[U = P_{12} TP_{34} TP_{56} TP_{78} \]

let us consider zero \(\phi_3 \) and \(\phi_4 \): \(P_{34} = 1 \)

\[T^2 \approx 1 \Rightarrow U = P_{12} P_{56} TP_{78} = P_{1+5} 2+6 TP_{78} = P_{1'2'} TP_{78} \]

The resulting matrix is 4-dimensional, not 6 → singular point?

NO

the investigation of the manifold structure shows that such points are regular, even flat.

metric is singular → Riemann tensor is regular

Same story in case of SU(2): Euler angles

\[U = e^{\phi_1 \sigma_3} e^{\phi_2 \sigma_1} e^{\phi_3 \sigma_3} \xrightarrow{\phi_2 = 0} e^{\phi' \sigma_3} \]

Even simpler example is \(\theta \) and \(\phi \) angles on the \(S^2 \)

\[ds^2 = d\theta^2 + \sin^2 \theta d\phi^2 \]
We showed on the algebraic level the regularity in points of coordinate singularity (some of them).
We showed on the algebraic level the regularity in points of coordinate singularity (some of them).

Still, we could not prove rigorously, that any Unitary matrix can be realized in this way.
We showed on the algebraic level the regularity in points of coordinate singularity (some of them)
Still, we could not prove rigorously, that any Unitary matrix can be realized in this way
But we have very strong evidence by numerical simulations
Conclusions

New architecture for Universal programmable linear-optical interferometers
Robust and beautiful, easy to implement technically
Experimental universality in simulations
Lacks mathematical proof
Corollary: two matrices are enough to generate any SU(N)
The minimal set of universal gates contains 2 elements!
Conclusions

New architecture for
Universal programmable linear-optical interferometers
Conclusions

New architecture for
Universal programmable linear-optical interferometers

Robust and beautiful, easy to implement technically
Conclusions

New architecture for
Universal programmable linear-optical interferometers

Robust and beautiful, easy to implement technically

Experimental Universality in simulations
Conclusions

New architecture for
Universal programmable linear-optical interferometers

Robust and beautiful, easy to implement technically

Experimental Universality in simulations

Lacks mathematical proof
Conclusions

New architecture for
Universal programmable linear-optical interferometers

Robust and beautiful, easy to implement technically

Experimental Universality in simulations

Lacks mathematical proof

Corollary: two matrices are enough to generate any $SU(N)$
Conclusions

New architecture for
Universal programmable linear-optical interferometers

Robust and beautiful, easy to implement technically

Experimental Universality in simulations

Lacks mathematical proof

Corollary: two matrices are enough to generate any $SU(N)$

The minimal set of universal gates contains 2 elements!
The fact is that just two matrices are sufficient to approximate any unitary.
The fact is that just two matrices are sufficient to approximate any unitary.
Let us illustrate this phenomenon for $SU(4)$: let us take two randomly chosen unitary 4×4 matrices U_1 and U_2. Now one can check if they generate all the unitary matrices just via generation of the random sequences $\{n_i\}$ and then looking at the matrix elements of $U = U_1^{n_1} U_2^{n_2} U_1^{n_3} \ldots$. A typical plot obtained this way looks like:
The fact is that just **two** matrices are sufficient to approximate any unitary.

Let us illustrate this phenomenon for $SU(4)$: let us take two randomly chosen unitary 4×4 matrices U_1 and U_2. Now one can check if they generate all the unitary matrices just via generation of the random sequences $\{n_i\}$ and then looking at the matrix elements of $U = U_1^{n_1} U_2^{n_2} U_1^{n_3} \ldots$. A typical plot obtained this way looks like:

![Figure: The plot of the matrix elements of the unitary matrix randomly generated from two random unitary matrices: Re U_{11} and Im U_{11} (left); Re U_{11} and Re U_{23} (right).]
THANK YOU FOR YOUR ATTENTION!