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Bell’s experiment:

Ψ =
1

2
↑ 𝐴 ↓ 𝐵 + e𝑖Φ ↓ 𝐴 ↑ 𝐵 ,

: eigenstates of  Pauli operators 𝜎𝑍
𝐴,𝐵

along locally defined Z-axes.

The particles’ polarization is tested at two widely 

separated detectors along two arbitrary directions 

within the locally defined XY-planes.

↑ , ↓ 𝐴,𝐵



Statistical correlation between binary                         

outcomes of the two detectors.

:   Relative angle between the                                         

orientations of the two detectors.

Quantum Mechanics:

𝐸 Δ − Φ = −cos Δ − Φ

Δ

The Bell’s inequality states in an experimentally 

testable way that this prediction cannot be reproduced 

by any model of hidden variables that shares certain 

intuitive features.

𝐸 Δ − Φ ∶



In particular, the CHSH version of the inequality states 

that for any such model of hidden variables:

for every set of values                   .

On the other hand, according to the predictions of 
Quantum Mechanics this magnitude reaches a maximum 
value of         for Δ1 = −Δ2 =

𝜋

4
= δ/2

𝐸 Δ1 + 𝐸 Δ2 + 𝐸 Δ1 − δ − 𝐸 Δ2 − δ ≤ 2

Δ1,Δ2,δ

2 2

Very carefully designed experimental tests have 

confirmed the predictions of Quantum Mechanics and, 

thus, ruled out all such models of hidden variables.



: binary values - either  -1  or  +1, which

describe the outcomes in each one of

the two detectors if the polarization of

their corresponding particles would be

tested along directions Ω𝐴 and Ω𝐵,

respectively.

: space of possible configurations

: (density of) probability for each

to happen in a single realization of the

experiment.

𝐷

𝜌 𝜆 𝜆 ∈ 𝐷

𝑠Ω𝐴

𝐴
𝜆

𝑠Ω𝐵

𝐵
𝜆

The CHSH inequality’s proof :



Hence, for any 𝜆 ∈ 𝐷 and any two orientations Ω𝐴, 

Ω′𝐴 for detector A and Ω𝐵, Ω′𝐵 for detector B, we have:

𝐻 𝜆 ≡ 𝑠Ω𝐴

𝐴
𝜆 ∗ 𝑠Ω𝐵

𝐵
𝜆 + 𝑠Ω′𝐵

𝐵
𝜆

+ 𝑠Ω′𝐴
𝐴

𝜆 ∗ 𝑠Ω𝐵

𝐵
𝜆 − 𝑠Ω′𝐵

𝐵
𝜆 = ±2

The CHSH inequality is then obtained by integration 

over the space of all possible hidden configurations.

−2 ≤ න𝑑𝜆 𝜌 𝜆 ∙ 𝐻 𝜆 ≤ +2

න𝑑𝜆 𝜌 𝜆 ∙ 𝐻 𝜆 = 𝐸 ∆1 + 𝐸 ∆2 + 𝐸 ∆1 − 𝛿 − 𝐸(∆2 − 𝛿)



The proof requires three physically well-defined 

angles, say

The fourth direction,        , serves as a reference 

direction to define the other three.

This fourth direction serves also as a reference to 

describe the possible hidden configurations           of 

each pair of entangled particles: whatever     is, it must 

be defined with respect to a reference frame (as any 

physical property).

Ω𝐴

𝜆 ∈ 𝑆

The orientation of this reference direction is an 
spurious (unphysical/irrelevant) gauge degree of 
freedom.

𝜆

∆1= 𝜗(Ω𝐵 , Ω𝐴), ∆2= 𝜗(Ω′𝐵 , Ω𝐴), 𝛿 = 𝜗(Ω′𝐴, Ω𝐴),



Lab frame: laboratory’s table

Ω𝐴

Ω𝐴

Lab frame: Sun’s axis

Ω𝐴

Lab frame: the Galaxy’s center

Ω𝐴

Lab frame: the center of the local 
Supercluster (the Great Attractor)





How can we properly define the relative     
orientation  𝛿 between  Ω𝐴 and Ω′𝐴, if we are 
defining the orientation of detector A as our 
reference ?

It would be possible if the four binary values

could be obtained for single pairs of entangled 
particles.

In the actual experimental set-up the polarization of 
each particle in a single pair can be tested only along 
one direction !

𝑠Ω𝐴

𝐴
𝜆 , 𝑠Ω′𝐴

𝐴
𝜆 , 𝑠Ω𝐵

𝐵
𝜆 , 𝑠Ω′𝐵

𝐵
𝜆



How can we properly define the relative     

orientation  𝛿 between  Ω𝐴 and Ω′𝐴, if we are 

defining the orientation of detector A as our 

reference ?

It could still be possible if there would exist an 

absolute preferred frame of reference to which we 

could refer.

Principle of relativity: we are fully entitled to choose 

the orientation of detector A as a reference direction 

to describe the hidden configuration of each single 

pair of entangled particles  !



In the actual experimental set-up only the  relative 
angle between the orientation of the two detectors is 
a physically well-defined observable, while their 
absolute orientation is an unphysical/irrelevant 
gauge degree of freedom.



Gauge Symmetry: In order to build a model of hidden 

variables we may only need to define the binary values 

(gauge-fixing condition):

𝑠Ω𝐴

𝐴
𝜆 , 𝑠Ω𝐵

𝐵
𝜆 , 𝑠Ω′𝐵

𝐵
𝜆 , 𝑠Ω𝐵−Δ

𝐵
𝜆 , 𝑠Ω′𝐵−Δ

𝐵
𝜆

However, it is straightforward to check that the  proof of 
the CHSH inequality does not necessarily hold for such 
models.

𝑠Ω𝐴

𝐴
𝜆 ∗ 𝑠Ω𝐵

𝐵
𝜆 + 𝑠Ω′𝐵

𝐵
𝜆 + 𝑠Ω𝐵−Δ

𝐵
𝜆 − 𝑠Ω′𝐵−Δ

𝐵
𝜆



PencilLab frame !

It makes no sense to attempt to distinguish a situation in which the 
pencil/lab is kept fixed while the reference detector is rotated (crucial 
for the proof of CHSH inequality !), from a situation in which the 
reference direction is kept fixed while the pencil/lab is rotated (which 
is irrelevant !)

Ω𝐴

Ω𝐵

Ω′𝐵



How do these arguments apply to the standard 

formalism of Quantum Mechanics ?

Ψ =
1

2
↑ 𝐴 ↓ 𝐵 + e𝑖Φ ↓ 𝐴 ↑ 𝐵 ,

where ↑ , ↓ 𝐴,𝐵 are bases of eigenstates of the 

Pauli operators 𝜎𝑍
𝐴,𝐵 along Z-axes locally defined at 

the sites of each one of the particles.

These eigenstates are defined up to a phase and, 

therefore, the phase Φ in the above expression is not 

properly defined.



How can we properly define it ?

Choose an arbitrary experimental setting and use it as 

a definition of parallel directions Δ = 0 between the 

orientations of the two detectors.

Use the experimental correlations between their 

outcomes to properly define the phase Φ of the 

entangled state with respect to the arbitrary chosen 
reference setting.

With respect to the reference setting we can now 

properly define a relative rotation Δ in the orientation 

of the two detectors.



Thus, the experimental setting is fully described by the 

pair (Φ, Δ) defined with respect to an arbitrary 

reference setting, but only the difference Δ − Φ is 

independent of the chosen setting. Hence, the 

correlation between the outcomes must be a function 

of this single parameter.

However, since we need an arbitrary reference 

setting of the detectors to define the pair (Φ, Δ) there 

is no way that we can properly define separately the 

orientations of each one of the detectors.



The proof would still hold, if protected by symmetry 

considerations …

But symmetries may be (spontaneously) broken !

This is the quid to build an explicitly local model of 

hidden variables that reproduces the predictions of 

Quantum Mechanics.



Back to the proof of the CHSH 

inequality: what’s missing there ?

Let say that detector A in position Ω𝐴 defines a set 
of coordinates λ𝐴 ∈ D over the space of all 
possible hidden configurations D, with a well-
defined response function 𝑠(λ𝐴).

Then detector A in position Ω′𝐴 could define,  in 
principle, a different set of coordinates λ′𝐴 ∈ D over the 
space D, with its response given by 𝑠(λ′𝐴).

And detector B, as well, would define, at each one of its 
two possible orientations its own sets of coordinates 
over the space D, λB ∈ D and λ′𝐵 ∈ D , with its  
response given by 𝑠 λB and 𝑠(λ′B), respectively.



Since these four sets of coordinates parameterize the 
same space 𝐷 there must exist some transformation 
law that relates them:

such that the probability of each configuration to 
happen in a single realization remains invariant (free-
will).

𝜆′𝐴 = Υ 𝜆𝐴; 𝛿

𝜆𝐵 = Υ 𝜆𝐴; Δ1

𝜆′𝐵 = Υ 𝜆𝐴; Δ2

𝑑𝜆𝐴 𝜌(𝜆𝐴) = 𝑑𝜆′𝐴 𝜌(𝜆′𝐴) = 𝑑𝜆𝐵 𝜌(𝜆𝐵) = 𝑑𝜆′𝐵 𝜌(𝜆′𝐵)



Hence, for any 𝜆𝐴 ∈ 𝐷 we should write:

𝐻 𝜆𝐴 ≡ 𝑠 𝜆𝐴 ∗ 𝑠 𝜆𝐵 + 𝑠 𝜆′𝐵

+𝑠 𝜆′𝐴 ∗ 𝑠 𝜆𝐵 − 𝑠 𝜆′𝐵 = ±2

Thus, at the integration over the whole space 𝐷 we 

get

−2 ≤ න𝑑𝜆𝐴 𝜌 𝜆𝐴 ∙ 𝑠 𝜆𝐴 ∗ 𝑠 𝜆𝐵(𝜆𝐴) + 𝑠 𝜆′𝐵(𝜆𝐴) +

+න𝑑𝜆𝐴 𝜌 𝜆𝐴 ∙ 𝑠 𝜆′𝐴(𝜆𝐴) ∗ 𝑠 𝜆𝐵(𝜆𝐴) + 𝑠 𝜆′𝐵(𝜆𝐴) ≤ 2



The first integral does produce the wanted correlations

න𝑑𝜆𝐴 𝜌 𝜆𝐴 ∙ 𝑠 𝜆𝐴 ∗ 𝑠 𝜆𝐵(𝜆𝐴) + 𝑠 𝜆′𝐵(𝜆𝐴) +

+න𝑑𝜆𝐴 𝜌 𝜆𝐴 ∙ 𝑠 𝜆′𝐴(𝜆𝐴) ∗ 𝑠 𝜆𝐵(𝜆𝐴) + 𝑠 𝜆′𝐵(𝜆𝐴)

න𝑑𝜆𝐴 𝜌 𝜆𝐴 ∙ 𝑠 𝜆𝐴 ∗ 𝑠 𝜆𝐵(𝜆𝐴) + 𝑠 𝜆′𝐵(𝜆𝐴) = 𝐸 Δ1 + 𝐸(Δ2)

But the second integral may not !



න𝑑𝜆𝐴 𝜌 𝜆𝐴 ∙ 𝑠 𝜆′𝐴 𝜆𝐴 ∗ 𝑠 𝜆𝐵 𝜆𝐴 + 𝑠 𝜆′𝐵 𝜆𝐴 =

= න𝑑𝜆′𝐴 𝜌 𝜆′𝐴 ∙ 𝑠 𝜆′𝐴 ∗ 𝑠 𝜆𝐵(𝜆𝐴(𝜆
′
𝐴)) + 𝑠 𝜆′𝐵(𝜆𝐴(𝜆

′
𝐴))

If the sets of coordinates accumulates a geometric 
phase along a cyclic transformation

the second integral does not produce the wanted 
correlations

𝑑𝜆′𝐴׬ 𝜌 𝜆′𝐴 ∙ 𝑠 𝜆′𝐴 ∗ 𝑠 ሚ𝜆𝐵 + 𝑠 ሚ𝜆′𝐵 = 𝐸 Δ1 − 𝛿 + 𝐸 Δ2 − 𝛿 ,

ሚ𝜆𝐵 = Υ 𝜆′𝐴; Δ1 − 𝛿 , ሚ𝜆𝐵 = Υ 𝜆′𝐴; Δ2 − 𝛿

Υ 𝜆′𝐴; Δ1 − 𝛿 ≠ Υ Υ 𝜆′𝐴; −𝛿 ; Δ1



The appearance of a geometric phase through a 
cyclic symmetry transformation

is a known phenomena in theories involving gauge 
symmetries and, therefore, we should allow it when
pursuing an underlying model of hidden variables for 
the Bell’s states.

However, the Bell’s theorem cannot account for such 
models.

Υ 𝜆′𝐴; Δ1 − 𝛿 ≠ Υ Υ 𝜆′𝐴; −𝛿 ; Δ1



We have taken advantage of these 

considerations to build an explicitly 

local statistical model that reproduces 

the predictions of Quantum Mechanics 

for the Bell’s states.
[1] “Solving the EPR paradox: an explicitly local statistical model 

for the singlet quantum states”, D. Oaknin, arXiv:1411:5704

[2] “The Bell’s theorem revisited: a subtle, though crucial, 

assumption has gone unnoticed … and it might not be justified!”,  

D. Oaknin, hal-01862953



THE MODEL:

We consider an infinite set of possible hidden 
configurations distributed over the unit circle.

The orientation of detector A sets a reference direction 
along this circle and its associated set of coordinates                    
. The probability density of each hidden configuration 
to happen is given by:

𝜆𝐴 ∈ −𝜋, 𝜋

𝑔 𝜆𝐴 = −
1

4
sin 𝜆𝐴



Similarly, the orientation of detector B sets its own 

reference direction along this circle with its own 

associated set of coordinates                   .

Both sets of coordinates are related by a 

transformation law

Moreover, symmetry considerations demand that the 

probability density of each hidden configuration to 

happen must given in the new set of coordinates by:

𝜆𝐵 ∈ −𝜋, 𝜋

𝑔 𝜆𝐵 = −
1

4
sin 𝜆𝐵

𝜆𝐵 = −𝐿 𝜆𝐴; Δ − Φ



Since the probability of each possible hidden 

configuration must be independent of the set of 

coordinates (“free-will”) we must have:

That is,

This demand fixes the transformation law

as a function of the parameter

𝑑 cos 𝜆𝐵 = 𝑑 cos 𝜆𝐴

𝜆𝐵 = −𝐿 𝜆𝐴; Δ − Φ

𝑔 𝜆𝐵 𝑑𝜆𝐵 = 𝑔 𝜆𝐴 𝑑𝜆𝐴

Δ − Φ

𝜆𝐴

𝜆𝐵



This transformation law is additive in the following 

sense:

Let      be a setting for which

If we use it as a definition of parallel directions         

between the two detectors, the entangled state 

corresponds to           ,           .

Consider now a new setting      that is obtained from 

the former by a relative rotation of the detectors by an 

angle     . The two new sets of coordinates are related 

by

𝜆𝐵 = −𝐿 𝜆𝐴; 0𝐿0

Δ = 0 Φ = 0

𝐿1

Δ

𝜆′𝐵 = −𝐿 𝜆𝐴; Δ



If we use this new setting as a reference            , the 

entangled state corresponds to

Hence, if we now consider a third experimental setting      

that is obtained from      by a relative rotation of the 

two detectors by an angle      the two final sets of 

coordinates  are related by

That is, the last setting      is related to the original one      

by a relative rotation of the detectors by an angle

𝐿2
𝐿1
Δ2

𝜆′′𝐵 = −𝐿 𝜆𝐴; Δ2 −Φ1 = −𝐿 𝜆𝐴; Δ2 + Δ1

Δ1 = 0

Φ1 = −Δ

𝐿2 𝐿0
Δ1 + Δ2



Finally, we define the response function of detector A 

as:

𝑠 𝐴 𝜆𝐴 = ቊ
+1, 𝑖𝑓 𝜆𝐴 ∈ 0,+𝜋

−1, 𝑖𝑓 𝜆𝐴 ∈ −𝜋, 0

𝑠 𝐵 𝜆𝐵 = ቊ
+1, 𝑖𝑓 𝜆𝐵 ∈ 0,+𝜋

−1, 𝑖𝑓 𝜆𝐵 ∈ −𝜋, 0

Similarly, we define the response function of detector B 

as:

These definitions are explicitly local since they depend 
only on the orientation of the hidden configuration with 
respect to the corresponding detector !



Therefore,

𝑠 𝐴 𝜆𝐴 = +1 ∧ 𝑠 𝐵 𝜆𝐵 𝜆𝐴 = +1, 𝑖𝑓 𝜆𝐴 ∈ 0, Δ − Φ

Hence, the correlation between the outcomes of the 

two detectors is given by:

𝑠 𝐴 𝜆𝐴 = +1 ∧ 𝑠 𝐵 𝜆𝐵 𝜆𝐴 = −1, 𝑖𝑓 𝜆𝐴 ∈ Δ − Φ, 𝜋

𝑠 𝐴 𝜆𝐴 = −1 ∧ 𝑠 𝐵 𝜆𝐵 𝜆𝐴 = +1, 𝑖𝑓 𝜆𝐴 ∈ Δ − Φ − 𝜋, 0

𝑠 𝐴 𝜆𝐴 = −1 ∧ 𝑠 𝐵 𝜆𝐵 𝜆𝐴 = −1, 𝑖𝑓 𝜆𝐴 ∈ −𝜋, Δ − Φ − 𝜋

𝐸 Δ − Φ = න

0

Δ−Φ

𝑔 𝜆𝐴 𝑑𝜆𝐴 + න

−𝜋

Δ−Φ−𝜋

𝑔 𝜆𝐴 𝑑𝜆𝐴

− න

Δ−Φ

𝜋

𝑔 𝜆𝐴 𝑑𝜆𝐴 − න

Δ−Φ−𝜋

0

𝑔 𝜆𝐴 𝑑𝜆𝐴 =

= −cos Δ − Φ



SUMMARY & CONCLUSIONS:
The proof of the Bell’s inequality relies on an unjustified 
implicit assumption, which:

a) is not fulfilled by the actual set-up of the experiments that 
test it;

b) is not required by fundamental physical principles and,          
indeed, it is at odds with the principle of relativity.

Namely, the proof of the inequality implicitly assumes the 
existence of an absolute preferred frame of reference with 
respect to which the orientation of the devices that test the 
particles’ polarization can be defined.

Hence, the inequality cannot actually distinguish between the 
predictions of quantum mechanics for Bell’s states and those 
of models of hidden variables that do not comply with this 

unjustified assumption.



SUMMARY & CONCLUSIONS:
It is possible to build a local model of hidden variables that 
reproduces the predictions of Quantum Mechanics for the Bell’s 
polarization states of two entangled particles and fulfills the 
constraints of ‘free-will’, once the gauge degrees of freedom 
involved are properly identified.

D.Oaknin, “Solving the EPR paradox: an explicit local statistical model for the singlet”, 
arxiv:1411.5704

Similar analysis has been done for the GHZ polarization state of 
three entangled particles and for a single spin-1 particle (qutrit).

D.Oaknin, “Solving the Greenberger-Horne-Zeilinger paradox: an explicit local statistical 
model for the GHZ state”, arxiv:1709.00167

D.Oaknin, “Bypassing the Kochen-Specker theorem: an explicit local statistical model 
for the qutrit”, arxiv:1805.04935


