

Searches for new phenomena in dilepton final states using the ATLAS detector

Deshan Abhayasinghe

for the ATLAS Collaboration

Motivation

- Many Beyond the Standard Model (BSM) theories that predict new phenomena decaying to dilepton final states
- Grand Unified Theory (GUT)
 - Unification of Standard Model forces at very high energies
 - existence of dark matter and neutrino masses
- Seesaw mechanism
 - Address the question of neutrino mass generation
- Leptonic final states are historically channels of discovery and precision measurements
 - Low-background and efficient experimental signature
 - ATLAS detector's excellent energy and momentum resolution

ee ATLAS event display $m_{ee} = 4.06 \text{ TeV}$

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019

ATLAS Preliminary $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

_			
1/5 =	8	13	Te\

	Model	ℓ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1] Limit			Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD OBH} \\ \text{ADD OBH} \\ \text{ADD BH high } \sum_{PT} \\ \text{ADD BH high } \sum_{PT} \\ \text{ADD BH high } \sum_{KK} \gamma \\ \text{Bulk } \text{RS } (g_{KK} \rightarrow \forall W) / ZZ \\ \text{Bulk } \text{RS } G_{KK} \rightarrow WW \rightarrow qqqq \\ \text{Bulk } \text{RS } g_{KK} \rightarrow tt \\ \text{2UED } / \text{RPP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ \end{array}$ multi-chann $\begin{array}{c} 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 j \\ - \\ 2 j \\ \geq 2 j \\ \geq 3 j \\ - \end{array}$ wel $\begin{array}{c} 2 J \\ \geq 1 \ b, \geq 1 J \\ \geq 2 \ b, \geq 3 \end{array}$	Yes - - - - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo M	7.7 TeV 8.5 TeV 8.5 TeV 8.2 TeV 9.55 TeV 2.3 TeV 1.6 TeV 3.8 TeV 1.6 TeV	$\begin{array}{l} n=2 \\ n=3 \; \text{HLZ NLO} \\ n=6 \\ n=6, M_D=3 \; \text{TeV}, \text{rot BH} \\ n=6, M_D=3 \; \text{TeV}, \text{rot BH} \\ k/\overline{M}_{PT}=0.1 \\ k/\overline{M}_{PT}=1.0 \\ k/\overline{M}_{PT}=1.0 \\ k/\overline{M}_{PT}=1.0 \\ \text{Ther}(1,1) \; 25\% \\ \text$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02566 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to \tau r \\ \mathrm{SSM} \ W' \to \tau r \\ \mathrm{VT} \ V' \to WZ \to qqq \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HVT} \ V' \to WH/2H \ \mathrm{model} \ \mathrm{B} \\ \mathrm{LRSM} \ W_R \to tb \\ \mathrm{LRSM} \ W_R \to \mu N_R \end{array}$	2 e, µ 2 τ - 1 e, µ 1 r, μ 1 τ 3 0 e, μ multi-chann 2 μ	- 2 b ≥ 1 b, ≥ 1 J - 2 J el el 1 J	- - Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	2' mas 2' mas 2' mas 2' mas 4'' mas 4'' mas 4'' mas 4'' mas 4'' mas 4'' mas 4''' mas 4''''''''''''''''''''''''''''''''''''	5.1 TeV 2.42 TeV 3.0 TeV 3.0 TeV 3.7 TeV 3.8 TeV 2.93 TeV 3.25 TeV 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.08299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
G	Cl qqqq Cl ℓℓqq Cl tttt		2 j 	- - Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4c} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM)	0 e, µ M) 0 e, µ 0 e, µ 0-1 e, µ	1 - 4j 1 - 4j $1 J, \le 1j$ 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M, 700 GeV m _{\$\$}	1.55 TeV 1.67 TeV 3.4 TeV	$\begin{array}{l} g_{q}{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 \mathrm{GeV} \\ g{=}1.0, m(\chi) = 1 \mathrm{GeV} \\ m(\chi) < 150 \mathrm{GeV} \\ \gamma = 0.4, \lambda = 0.2, m(\chi) = 10 \mathrm{GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ² mass 1.03 Tr LQ ² mass 970 Ge ¹	1.4 TeV 1.56 TeV V	$\beta = 1$ $\beta = 1$ $\mathcal{B}(LQ_2^{\nu} \rightarrow b\tau) = 1$ $\mathcal{B}(LQ_3^{d} \rightarrow t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$\begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X\\ VLQ\;BB \rightarrow Wt/Zb + X\\ VLQ\;BB \rightarrow Wt/Zb + X\\ VLQ\;Y \rightarrow Wb + X\\ VLQ\;Y \rightarrow Wb + X\\ VLQ\;P \rightarrow Hb + X\\ VLQ\;QQ \rightarrow WqWq \end{array}$	multi-chann multi-chann $2(SS)/\geq 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el $\mu \ge 1$ b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1 B mass 1 T _{NA} mass 1 Y mass 2 B mass 1.2? Q mass 690 GeV	37 TeV 34 TeV 1.64 TeV 1.85 TeV TeV	$\begin{array}{l} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} \ Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_{\text{R}}(Wb) = 1 \\ & \kappa_{\text{B}} = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton l^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q' mass q' mass b' mass d' mass v' mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana γ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 e,μ 2μ 2,3,4 e,μ (S 3 e,μ,τ - -	≥ 2 j 2 j S) - - - - - - -	Yes - - - - 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	Nº mass 560 GeV Ne mass 870 GeV H** mass 870 GeV Mit mass 400 GeV mail: charged particle mass 1.21 monopole mass 1.21	3.2 TeV TeV 2.37 TeV	$m(W_R) = 4.1$ TeV, $g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm n} \to \ell \tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	pa	rtial data	full d	ata		10 *	1 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter j (J).

Status: May 2019

ATLAS Preliminary

"Only a selection of the available mass limits on new states or phenomena is shown 1.5mail-radius (large-radius) jets are denoted by the letter j (J).

arXiv:1906.05609

"Only a selection of the available mass limits on new states or phenomena is shown 1.Smail-radius (large-radius) jets are denoted by the letter j (J).

Lepton $+E_T^{miss}$ **Search** - **High** mass events

 $p_T^e = 1.1 \text{ TeV}$ $E_T^{miss} = 1.1 \text{ TeV}$ $m_T = 2.2 \text{ TeV}$

- $p_T^{\mu} = 2.4 \text{ TeV}$ $E_T^{miss} = 2.7 \text{ TeV}$
- $m_T = 5.0 \, \text{TeV}$

Highest mass event for μ channel. One of the highest for e channel

Analysis overview

Additional charged gauge bosons W' appearing in extended gauge models

- Provide the decay of $W' \to I\nu$
- Events with a single lepton (e or μ) and missing transverse energy (E_T^{miss})
- Deviations from SM prediction in m_T distribution
- $m_T = \sqrt{2p_T E_{\text{miss}}^{\mathsf{T}} (1 \cos \phi_{l\nu})}$
- Benchmark model: Sequential Standard Model (SSM)
- Same couplings to fermions as SM W

Background estimation

Background distribution evaluated from simulation (template-based analysis)

Data-driven estimate of the multi-jet background

Results

Local p-value distribution for W' bosons in the SSM with mass between 0.15 and 7 TeV in $e\nu$ and $\mu\nu$ channel

Largest excess: $m_{W'} = 625 \text{ GeV} (e\nu, 2.8\sigma \text{ local}, 1.3\sigma \text{ global significance})$

Largest excess: $m_{W'} = 200 \text{ GeV} (\mu\nu, 2.1\sigma \text{ local}, 0.4\sigma \text{ global significance})$

Results

Local p-value distribution for W' bosons in the SSM with mass between 0.15 and 7 TeV in combined channel

Largest excess: $m_{W'} = 625 \text{ GeV} (1.8\sigma \text{ local}, 0.5\sigma \text{ global significance})$

Benchmark limits

- Upper limits on the cross-section on the production of a W' SSM boson decaying to only one lepton generation (\(\sigma \times BR\)\) are computed at the 95% CL
- Bayesian analysis with a uniform positive prior probability distribution for $\sigma \times BR$

Generic limits

- Generic fiducial cross section limits set on $m_{\ell
 u} > 0.3 imes m_{W'}$
- Different choices of $\Gamma(W')/m(W')$ ranging between 1% and 15%

PLB 796 (2019) 68

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

ATLAS Preliminary

Dilepton Search - Highest mass events

 $m_{ee} = 4.06 \text{ TeV}$

Analysis overview

- ▶ First ATLAS full-Run 2 result (139 fb⁻¹)
- Search for new resonances in m_{ee} and $m_{\mu\mu}$ Event Selection:
 - Two same flavor leptons $225 < m_{II} < 6000 \text{ GeV}$

Background:

Parametric functional fit to data $f_{\ell\ell}(m_{\ell\ell}) = a \cdot f_{BW,Z}(M_{\ell\ell}) \cdot (1 - x^c)^b \cdot x^{\sum_{l=0}^3 p_l \log(x)^l}$

Generic Signal:

- Non-Relativistic Breit-Wigner ⊗ (Gauss+Crystal-Ball)
 - Accounts for detector effects
- Fiducial region defined for hypothetical signal X
 - $m_{\ell\ell}^{true} > (m_{\ell\ell} 2\Gamma_X)$
 - $\mid \eta \mid <$ 2.5, $p_{T,\ell\ell} >$ 30 GeV

Results

- Local significance for 0-width resonance
- Largest excess:
 - 774 GeV (*ee*, 2.9σ local, 0.1σ global significance)
 - 267 GeV (μμ, 2.4σ local, 0.3σ global significance)
- Combination of *ee* and μμ channels assumed the lepton flavor universality explicitly
 - 264 GeV (Combination 2.3 σ local, $\sim 0\sigma$ global significance)
- Measured local significance as a function of pole mass (m_X) and signal width (Γ_X/m_X)

Limits

m_x [GeV]

Generic limits are calculated for various width assumptions of signal shape

The generic cross-section limits at $\Gamma/m = 0.5\%$, 1.2% and 3.0% are compared with predictions of Z'_{ψ} , Z'_{χ} and Z'_{SSM} , respectively, to reinterpret them and obtain mass limits

Heavy Vector Triplet Limits

э. The generic results are converted Heavy Vector Triplet (HVT) Limits 24 HVT bosons can couple to fermions (f), leptons (l), and Higgs (h) 24

- Limits on HVT couplings for resonance masses 3, 4, and 5 TeV
 - Areas outside the curves are excluded

arXiv:1904.12679

"Only a selection of the available mass limits on new states or phenomena is shown. I Small-radius (large-radius) jets are denoted by the letter j (J).

Heavy neutrino and a charged lepton - overview

- Based on Left-Right Symmetric Model (LRSM) theory with right handed Neutrino (NR) mass smaller than right handed gauge boson (WR)
- Search performed with 80 fb⁻¹ of ATLAS data

- Investigates signature for $W_R \rightarrow N_R \ell$ decays
 - $N_R \to \ell^{\pm} jj$
 - highly collimated objects from decays of boosted particles give large radius jets (R=1) → (j_N)
 - Final state signature $\ell^{\pm} j_N$
 - Observable: m_{W_R}
- Unique topology in *e* channel where j_N contains subleading electron $\rightarrow N_R$
- Complementary approach in mu channel where j_N + subleading muon $\rightarrow N_R$

Background estimation

- Data-driven background estimation:
 - $m_{W_R} < 2$ TeV control region
 - extrapolated to single-bin signal region of $m_{W_R} > 2$ TeV
- Comparison of the m^{reco}_{WR} distribution between data and the fitted background prediction for the electron (left) and muon (right) channels
- Two signal scenarios considered in this search are overlayed

Results

	Electron Channel	Muon Channel
Signal $(m_{W_{\rm R}} = 3 \text{ TeV}, m_{N_{\rm R}} = 150 \text{ GeV})$	346^{+48}_{-75}	411_{-48}^{+36}
Signal ($m_{W_{\rm R}} = 3$ TeV, $m_{N_{\rm R}} = 300$ GeV)	471_{-69}^{+42}	429_{-40}^{+29}
Signal ($m_{W_{\mathrm{R}}} = 4 \text{ TeV}, m_{N_{\mathrm{R}}} = 400 \text{ GeV}$)	66^{+6}_{-10}	57^{+4}_{-4}
Expected background	$2.8^{+0.5}_{-0.7}$	$1.9\substack{+0.5\\-0.7}$
Observed events	8	4
Significance	2.4σ	1.2σ
<i>p</i> -value	0.0082	0.12

2 Using single bin poisson counting experiment

- 21 Observed yields and expected background and signal yields in the signal region
- х. The significance and the p-values are shown for the background-only hypothesis

Benchmark limits

- Lower limits on the masses of N_R and W_R for each of the considered signal scenarios are determined by using the profiled likelihood test statistic with the CLs method
- Model assumes equivalence of left and right-handed weak gauge couplings, universality of all the right-handed quarks and leptons, and the same masses for all three flavours of heavy right-handed neutrinos

Summary

- Dilepton resonance search: PLB 796 (2019) 68
- *W'* Search: arXiv:1906.05609
- Heavy neutrino search:arXiv:1904.12679

No major surprises, dilepton analyses are pushing further the search area covering the TeV regime

Questions or Comments

Dilepton Search – Performance

ee and $\mu\mu$ mass resolution as a function of the generated mass of the dilepton pair $(m_{\ell\ell}^{true})$

ee and µµ selection efficiency as a function of pole mass for spin-0, spin-1 and spin-2 resonances

Muon selection optimized to ensure optimal momentum resolution at high-p_T

Dilepton - Systematic uncertainties

Uncertainty source	Dielectron		Dimuon	
for m_X [GeV]	300	5000	300	5000
Spurious signal	$\pm 12.5 (12.0)$	$\pm 0.1 (1.0)$	$\pm 11.7 (11.0)$	$\pm 2.1 \ (2.2)$
Lepton identification	$\pm 1.6 \ (1.6)$	$\pm 5.6 \ (5.6)$	$\pm 1.8 (1.8)$	$^{+25}_{-20} \begin{pmatrix} +25\\ -20 \end{pmatrix}$
Isolation	$\pm 0.3 (0.3)$	$\pm 1.1 (1.1)$	$\pm 0.4 (0.4)$	$\pm 0.4 \ (0.5)$
Luminosity	$\pm 1.7 (1.7)$	$\pm 1.7 (1.7)$	$\pm 1.7 (1.7)$	$\pm 1.7 \ (1.7)$
Electron energy scale	$^{-1.7}_{-4.0} \begin{pmatrix} +1.0\\ -1.8 \end{pmatrix}$	$^{+0.1}_{-0.4}~(\pm 0.8)$	-	-
Electron energy resolution	+7.9 +1.1 -8.3 +1.1 -0.9	$^{+0.4}_{-0.9}~(\pm 0.1)$	-	-
Muon ID resolution	-	-	$^{+0.8}_{-2.3} \begin{pmatrix} +0.3\\ -0.8 \end{pmatrix}$	$^{+0.6}_{-0.4} \begin{pmatrix} +0.5\\ -0.3 \end{pmatrix}$
Muon MS resolution	-	-	$^{+2.8}_{-3.8} \begin{pmatrix} +1.0\\ -1.3 \end{pmatrix}$	$\pm 2.4 \ (2.1)$
'Good muon' requirement	-	-	$\pm 0.6 \ (0.6)$	$^{+55}_{-35} \begin{pmatrix} +55\\ -35 \end{pmatrix}$

P Relative impact of $\pm 1\sigma$ variation of systematic uncertainties on the signal yield

- in percent for 0 width and 10% relative width signals shown in brackets
- P Only systematic uncertainties with an impact of \geq 5 on signal considered

Lepton $+ \underline{E_{miss}^{T}}$ - **Systematic uncertainties**

Source	Electron	channel	Muon channel		
	Background	Signal	Background	Signal	
	$m_{\rm T} = 2$ (6) TeV	$m_{\rm T} = 2$ (6) TeV	$m_{\rm T} = 2 \ (6) \ {\rm TeV}$	$m_{\rm T} = 2$ (6) TeV	
Trigger	negl. (negl.)	negl. (negl.)	1.1% (1.0%)	1.2% (1.2%)	
Lepton reconstruction and identification	4.1% (1.4%)	4.3% (4.3%)	8.9% (37%)	6.6% (38%)	
Lepton momentum scale and resolution	3.9% (2.7%)	2.7% (4.5%)	12% (47%)	13% (20%)	
$E_{\rm T}^{\rm miss}$ resolution and scale	<0.5% (<0.5%)	<0.5% (<0.5%)	<0.5% (<0.5%)	<0.5% (<0.5%)	
Jet energy resolution	<0.5% (<0.5%)	<0.5% (<0.5%)	<0.5% (0.6%)	<0.5% (<0.5%)	
Multijet background	4.4% (420%)	N/A (N/A)	0.8% (1.5%)	n/a (n/a)	
Top-quark background	0.8% (1.9%)	N/A (N/A)	0.7% (<0.5%)	N/A (N/A)	
Diboson extrapolation	1.5% (47%)	N/A (N/A)	1.3% (9.7%)	N/A (N/A)	
PDF choice for DY	1.0% (10%)	N/A (N/A)	<0.5% (1.0%)	N/A (N/A)	
PDF variation for DY	8.1% (13%)	N/A (N/A)	7.4% (14%)	N/A (N/A)	
EW corrections for DY	4.2% (4.5%)	N/A (N/A)	3.7% (7.0%)	N/A (N/A)	
Luminosity	1.6% (1.1%)	1.7% (1.7%)	1.7% (1.7%)	1.7% (1.7%)	
Total	12% (430%)	5.4% (6.4%)	17% (62%)	15% (43%)	

- Systematic uncertainties in the expected number of events as estimated for the total background and for signal with a W' SSM mass of 2 (6) TeV
- Large uncertainties in the background yields at 6 TeV have little impact on the statistical analysis due to the small background expectation high mT values

Heavy neutrino - Systematic uncertainties

Component	Electron channel $[\%]$	Muon channel $[\%]$
Lepton identification	4-20	4-8
Lepton isolation	4 - 5	1.0 - 1.5
Lepton reconstruction	4 - 5	1 - 4
Lepton trigger	4 - 5	0.5
Pile-up	< 0.5	2 - 3
Luminosity	2	2
Theory	10	10

Relative systematic uncertainties of the signal yield in the signal region, in percentage for each source

The ranges indicate the different signal samples