Latest Results from the DEAP-3600 Dark Matter Search Experiment

Damian GoeldiCarleton University

ICNFP 2019

NATIONAL RESEARCH CENTER

"KURCHATOV INSTITUTE"

Canadian Nuclear Laboratories

Laboratoires Nucléaires Canadiens

Carleton

MINISTERIO DE CIENCIA, INNOVACIÓN

Ciemat nergéticas, Medioambientale

Laurentian University Université Laurentienne

INFN

di Fisica Nucleare

PRINCETON UNIVERSITY

ROYAL HOLLOWAY

University of Sussex

Technical University of Munich

The dark matter wind

symmetry magazine, Artwork by Sandbox Studio, Chicago with Corinne Mucha

Catching paper planes sounds easy...

symmetry magazine, Artwork by Sandbox Studio, Chicago with Corinne Mucha

Going underground

Dark matter Experiment using Argon Pulse-shape discrimination 3600 (3279)

doi.org/10.1016/j.astropartphys.2018.09.006

~300t water Cherenkov muon veto

48 8" muon veto PMTs

steel shell

255 8" signal PMTs

45cm acrylic light guides

filler blocks

<u>f</u>iller foam

cooling coil

acrylic flow guides

10cm wide WLS fiber neck veto

~30cm gaseous argon

~3.3t liquid argon

3μm TPB wavelength shifter (WLS)

5cm acrylic vessel

WIMP detection: nuclear recoil (NR)

Ar39 background: electron recoil (ER)

prompt light 0.05 PMT Voltage [V] -0.05 -0.1 -0.15 background-like -0.2(electron-recoil) -0.251000 4000 5000 0 2000 3000 Time [ns] 0.05 PMT Voltage [V] -0.05 -0.1 -0.15 signal-like -0.2(nuclear recoil) -0.250 1000 2000 3000 4000 5000 Time [ns]

Pulse-shape discrimination (PSD)

- Excited Ar produced in singlets and triplets
- Triplets live much longer
 (1.3μs) than singlets (6ns)
- Use ratio of prompt light (Fprompt) to discriminate ER backgrounds

Afterpulse removal using a Bayesian photoelectron (PE) counting algorithm

Best PSD on the market

AmBe neutron source calibration

Neutrons cannot be rejected using PSD

Position reconstruction

1. Based on PE distribution 2. Based on time of flight

Position reconstruction validation

- Reconstruct contained LAr mass using Ar39 events
- Kink is an artifact of time-residual calculation
- Will be tuned in future analyses

Position reconstruction validation

- Reconstruct contained LAr mass using Ar39 events
- Kink is an artifact of time-residual calculation
- Will be tuned in future analyses

More backgrounds: α

Rejecting LAr bulk α backgrounds

- Energy well beyond WIMP region of interest (ROI)
- Well explained by background model
- Easy to reject

Rejecting AV surface α backgrounds

- Emitted from the acrylic vessel (AV) surface
- Only partial energy deposition in LAr
- Can leak into WIMP ROI
- Reject using position reconstruction

1000 950 900 850 -100 50 100 150 x [mm] Inner flowguide (inner surface LAr) Inner flowquide (outer surface LAr) - Piston ring Outer flowquide (inner surface LAr) **UV** Scintillation

Neck α backgrounds

- α emitted from acrylic flowguide surfaces
- Scintillate in LAr film covering surfaces
- Scintillation light collimated by neck
- Majority lost because neck has no TPB
- Significant ROI leakage

- Distinct features in reconstructed energy and position
- Allows to break the degeneracy between flowguide surfaces
- Estimate rates from fit to data

Rejecting neck α backgrounds

- Exploitdiscrepancybetween twoposition fitters
- Caused by collimated light from neck

1% NR acceptance loss

150

200

backgrounds

100

0.4

0.3

0.2

0.1

0

NR band, 50% acceptance

ER band, 50% acceptance

Neck α band. 50% acceptance

250

Photoelectrons detected

300

Backgrounds summary

Final PE and Fprompt cuts chosen such that total background expectation:
< 1 event in 758 tonne days

Source	$N^{ m ROI}$
\sim ERs	0.03 ± 0.01
© Cherenkov	< 0.14
χ _α Radiogenic	$0.10^{+0.10}_{-0.09}$
Radiogenic Cosmogenic	< 0.11
ω AV surface	< 0.08
FG AV Neck FG	$0.49^{+0.27}_{-0.26}$
Total	$0.62^{+0.31}_{-0.28}$

Combined ER background model

arxiv.org/abs/1905.05811

WIMP ROI: 0 events in 758 tonne days

Leading limit on the WIMP-nucleon spin-independent cross section on a LAr target of 3.9E-45cm² for a 100 GeV WIMP mass at 90% C.L.

Conclusion

World-leading PSD performance:2.8E-7 @ 90% NR acceptance

- Combined fit of ER background simulation to data over 9 orders of magnitude
- Two position reconstruction algorithms:
 PE-based and TOF-based
- Background expectation < 1 event in 758 tonne days
- Observed no events
- Leading limit on the WIMP-nucleon spin-independent cross section on a LAr target of 3.9E-45cm² for a 100 GeV WIMP mass at 90% C.L.
- Developing analysis for current blind dataset

Future

