

Physics Beyond Standard Model with Kaons from NA62

Stefan Ghinescu

IFIN-HH, Romania for the NA62 Collaboration

ICNFP, August 2019

Phys. BSM @ NA62

Outline

Goal: Measure $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with at least 10% precision • \sim 200 participants from 27 institutes:Birmingham,

Bratislava, Bristol, Bucharest, CERN,

Dubna, Fairfax, Ferrara, Florence, Frascati,

Glasgow, Lancaster, Liverpool, Louvain,

Mainz, Moscow, Naples, Perugia, Pisa,

Prague, Protvino, Rome I, Rome II, San

Luis Potosi, TRIUMF, Turin, Vancouver

NA62 Timeline

- 2008: Approval
- 2009-2014: R&D and installation
- 2015: Commissioning
- 2016-2018: Run 1
- 2021-2023: Future Runs

Phys. BSM @ NA62

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in SM

- FCNC process forbidden at tree level
- High CKM suppression
- Short distance contribution dominates \rightarrow very clean theoretically
- Hadronic matrix element extracted from $BR(K^+ \rightarrow \pi^0 e^+ \nu)$

Theoretical prediction:

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ $BR(K_L \to \pi^0 \nu \bar{\nu}) = (3.4 \pm 0.6) \times 10^{-11}$

Experiment:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) < (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$
$$BR(K_L \to \pi^0 \nu \bar{\nu}) < (2.6) \times 10^{-8} (00\% CL)$$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ for New Physics

Measurements of $BR(K^+ \to \pi^+ \nu \bar{\nu})$ and $BR(K_L \to \pi^0 e^+ \nu)$ can reveal NP scenarios in many ways

- Custodial Randall-Sundrum
- Simplified Z,Z' models
- Littlest Higgs with T-parity
- Models with MFV

Strategy

• Decay in flight technique: $m_{mire}^2 = (p_K - p_\pi)^2$

- Signal signature: 1 beam track and one charged track downstream
- Sources of background: main K⁺ decay modes and beam activity
- 2 signal regions
- $15 < p_{\pi^+} < 35 GeV/c$

The NA62 detector

Requirements:

- ~ 100ps timing between sub-detectors
- > 10⁷ muon suppression
- > $10^7 \pi^0$ suppression
- $\sim 10^4$ kinematic suppression of background

The NA62 detector

Primary Beam:

- 400 GeV/c protons
- $2 \times 10^{12} \text{ p/spill}$
- 3.5 s spill

Secondary Beam

- 75GeV/c momentum
- 6%*K*⁺,70%π⁺,24%*p*

Decay region:

- 75m fiducial region
- ∼5 MHz decay rate
- Vaccuum $\sim 10^{-6}$ mbar

The NA62 detector

Upstream detectors:

- KTAG: K⁺ ID
- GTK: beam tracker
- CHANTI: Anti-counter for inelastic beam-gtk3 interactions

Downstream detectors:

- STRAW: momentum spectrometer
- CHOD: Scintillator hodoscopes
- LKr; MUV1,2: calorimeters
- RICH counter for π, μ, e ID
- LAV, SAC, IRC: Photon vetoes
- MUV3: muon veto

Analysis Strategy

• Selection:

- 1 particle final state topology
- π identification
- multi-track rejection
- photon rejection

The 2017 dataset

Key features:

- $N_k \sim 10^{12}$, 10 times the 2016 data
- Single Event Sensitivity, $SES = (0.34 \pm 0.04) \times 10^{-10}$

•
$$N_{expected}(K
ightarrow \pi
u ar{
u}) = 2.5 \pm 0.4$$

- Blind analysis: Signal and Control Regions blinded until completion of analysis
- 2016-like selection, but with improvements:
 - Better LKr reconstruction
 - Better pileup treatment
 - Improved $\pi^{\rm 0}$ rejection

Background studies

BSM physics program of NA62

- Rare kaon decays
- LNV/LFV in kaon decays [this talk]
- Exotic searches: [M. Mirra Talk]
 - HNL searches
 - Dark Photon
 - ALPs

- Conservation of lepton number is not a fundamental symmetry of the Standard model
- LNV,LFV predicted in BSM models
- $K^+ \rightarrow \pi^- l^+ l^+$ can happen via Majorana Neutrinos U:

LNV/LFV searches at NA62

- Dataset: 3 months of continuous data-taking in 2017
- Blind analysis strategy
- LNV modes measured wrt SM modes with opposite sign leptons
- Trigger description:

Trigger Name	Description	Use in LNV/LFV search
Di-Muon	3 tracks with 2 μ candidates (MUV3)	SM: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ & LNV: $K^+ \rightarrow \pi^- \mu^+ \mu^+$
Multi-Track e Multi-Track	3 tracks with 20GeV energy deposit in LKr Minimum bias 3-track trigger	SM: $K^+ \rightarrow \pi^+ e^+ e^-$ & LNV: $K^+ \rightarrow \pi^- e^+ e^+$ Control samples for bkg. studies

Previous Experiments:

$$BR(K^+ o \pi^- e^+ e^+) < 6.4 imes 10^{-10}$$
 @ 90%*CL*
 $BR(K^+ o \pi^- \mu^+ \mu^+) < 8.6 imes 10^{-11}$ @ 90%*CL*

SM for comparison

$$BR(K^+ o \pi^+ e^+ e^-) = (3.00 \pm 0.09) \times 10^{-7}$$

 $BR(K^+ o \pi^+ \mu^+ \mu^-) = (9.4 \pm 0.6) \times 10^{-8}$

$K^+ ightarrow \pi^- \mu^+ \mu^+$

- Number of Kaon decays in sample: $N_{\mathcal{K}} = (7.94 \pm 0.23) imes 10^{11}$
- Signal acceptance: 9.81%
- $SES = (1.28 \pm 0.04) \times 10^{-11}$
- Background:

Process	Expected bkg.
$K^+ ightarrow \pi^+ \pi^+ \pi^-$	0.70 ± 0.40
$K^+ ightarrow \pi^+ \mu^+ \mu^-$	$\textbf{0.08} \pm \textbf{0.02}$
$K^+ ightarrow \pi^+ \pi^- \mu^+ u$	0.05 ± 0.05
$K^+ ightarrow \pi^+ \pi^- e^+ u$	0.07 ± 0.05
$K^+ ightarrow \mu^+ u \mu^+ \mu^-$	0.01 ± 0.01
Total	0.91 ± 0.41

$K^+ ightarrow \pi^- \mu^+ \mu^+$

- \bullet Expected bkg. in the blinded region: 0.91 ± 0.41
- One candidate observed in the signal region
- $BR(K^+ \to \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11}$ @ 90%CL

- Number of Kaon decays in sample: $N_{K} = (2.14 \pm 0.07) \times 10^{11}$
- Signal acceptance: 4.98%
- $SES = (0.94 \pm 0.03) \times 10^{-10}$
- Background:

Process	Expected bkg.
$K^+ ightarrow e^+ u e^+ e^-$	0.12 ± 0.02
$K^+ ightarrow (e^+ e^- \gamma)_{\pi^0} e^+ u$	0.04 ± 0.01
Total	0.16 ± 0.03

$K^+ ightarrow \pi^- e^+ e^+$

- \bullet Expected bkg. in the blinded region: 0.16 ± 0.03
- No candidate in signal region
- $BR(K^+ \to \pi^- e^+ e^+) < 1.1 \times 10^{-10}$ @ 90% CL

Summary and prospects

• ${\cal K}^+
ightarrow \pi
u
u$ update on analysis of the 2017 dataset

- Nb. of Kaon decays: $N_{K} = (1.3 \pm 0.1) imes 10^{12}$
- $SES = (3.4 \pm 0.4) \times 10^{-11}$
- Expected signal: 2.5 ± 0.4 SM events
- Total bkg. (Upstream not included): 0.76 ± 0.10
- Final result on 2017 expected later this year

• LFV/LNV [PLB 797 134794 (2019)]

- $BR(K^+ \to \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11}$ @ 90%CL
- $BR(K^+ \to \pi^- e^+ e^+) < 1.1 \times 10^{-10}$ @ 90% CL

Factor 2-3 improvement over previous results! [BNL-E865, NA48/2]

Thank you for your attention!