KLEVER: an experiment to measure the $BR(K_L \rightarrow \pi^0 \nu \bar{\nu})$ at CERN SPS

Marco Mirra - INFN Napoli for the KLEVER project

8th International Conference on New Frontiers in Physics 2019

Kolymbari, 29 August 2019

$K \rightarrow \pi \nu \bar{\nu}$ in the Standard Model

➤ FCNC loop processes: s→d coupling and highest CKM suppression

- > SD contributions dominate $A_q \sim \frac{M_q^2}{M_W^2} V_{qs}^* V_{qd}$
- > Hadronic matrix element related to the precisely measured $BR(K_{e3})$
- SM prediction rates [Buras et al, JHEP 1511]:

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (8.4 \pm 1.0) \times 10^{-11} \qquad BR(K_L \to \pi^0 \nu \overline{\nu}) = (3.4 \pm 0.6) \times 10^{-11}$

Measuring both *K*⁺ and *K_L* BRs can determine the CKM unitarity triangle independently from *B* inputs

$K \rightarrow \pi \nu \overline{\nu}$ and new physics

Measurements of both BRs for K^+ and K_L channels can discriminate among NP scenarios

- Models with CKM-like flavor structure
 Models with MFV
- Models with new flavor-violating interactions in which either LH or RH couplings dominate
 - -Z/Z' models with pure LH/RH couplings
 - Littlest Higgs with T parity
- Models without above constraints – Randall-Sundrum

NP effects on $K \to \pi v v$ BRs with constraints from Re ε'/ε , ε_K , Δm_K , $K_L \to \mu \mu$

Model	$\Lambda \ [\text{TeV}]$	Effect on $BR(K^+ \to \pi^+ \nu \bar{\nu})$	Effect on $BR(K_L \to \pi^0 \nu \bar{\nu})$
Leptoquarks, most models	1 - 20	Very large enhancements; mainly ruled out	
Leptoquarks, U_1	1 - 20	+10% to $+60%$	+100% to $+800%$
Vector-like quarks	1 - 10	-90% to $+60%$	-100% to $+30%$
Vector-like quarks $+ Z'$	10	-80% to $+400%$	-100% to $0%$
Simplified modified Z , no tuning	1	-100% to $+80%$	-100% to $-50%$
General modified Z , cancellation to 20%	1	-100% to $+400%$	-100% to $+500%$
SUSY, chargino Z penguin	$4-6 {\rm ~TeV}$		-100% to $-40%$
SUSY, gluino Z penguin	$3-5.5~{\rm TeV}$	0% to $+60%$	-20% to $+60%$
SUSY, gluino Z penguin	10	Small effect	0% to $+300%$
SUSY, gluino box, tuning to 10%	1.5 - 3	$\pm 10\%$	$\pm 20\%$
LHT	1	$\pm 20\%$	-10% to $-100%$

NA62 status and timeline

- 2016 Commissioning + 1st physics run First result presented in March 2018 1 event observed, BR($K^+ \rightarrow \pi^+ vv$) < 14 × 10⁻¹⁰ (95%CL)
- 2017Physics run (23 weeks at 60% nominal intensity) $3 \times 10^{12} K^+$ decays recorded (> 10x more than 2016)
- 2018Physics run (31 weeks at 80% nominal intensity and better shielding of
upstream bkg)
 $5 \times 10^{12} K^+$ decays recorded (> 20x more than 2016)
- **2019-2020** LS2 (LHC Long Shutdown 2)

Fixed target runs at the SPS

2021 (Run 3):

Intention to continue data taking with NA62

- Measure BR($K^+ \rightarrow \pi^+ vv$) with ultimate sensitivity
- Search for hidden particles in beam-dump mode

2026 (Run 4): Turn focus to measurement of BR($K_L \rightarrow \pi^0 vv$) \rightarrow

29/08/2019 M. Mirra

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS 5

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have ≥ 2 extra γ s or ≥ 2 tracks to veto Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_\perp = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position

Main backgrounds:

Mode	BR	Methods to suppress/reject
$K_L \rightarrow \pi^0 \pi^0$	8.64×10^{-4}	γ vetoes, π^0 vertex, p_{\perp}
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_{\perp}
$K_L \rightarrow \pi e \nu(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ at J-PARC

Primary beam: 30 GeV *p* 100 kW = 1.2 × 10¹⁴ p/5.2 s

Neutral beam (16°) $\langle p(K_L) \rangle = 2.1 \text{ GeV}$

2015 run (current result)

- BR($K_L \rightarrow \pi^0 v v$) < 3.0 × 10⁻⁹ (90%CL)
- SES = $(1.30 \pm 0.14) \times 10^{-9}$
- Expected bkg = 0.42 ± 0.18 events
- Zero events in signal box

2016-2018

- 1.4x more data than for 2015 collected
- Several important detector upgrades and analysis improvements
- SES = 8.2×10^{-10} [KOTO preliminary, Moriond 2019]
- Combined with 2015: SES ~ 5 × 10^{-10}

2019-2024

- 20+ months of additional running planned
- Beam power expected to increase 50→100 kW gradually by 2024
- Continuing program of detector upgrades
- SES for SM BR reached around 2025

Long-term upgrade plans:

- Intention to upgrade to 10-100 event sensitivity (no official step proposal yet)
- Increase beam power to >100 kW
- New neutral beamline and extension of hadron hall
- Complete rebuild of detector

A $K_L \rightarrow \pi^0 \nu \overline{\nu}$ experiment at CERN SPS

 K_L Experiment for VEry Rare events

- High-energy experiment: Complementary to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62

A $K_L \rightarrow \pi^0 \nu \overline{\nu}$ experiment at CERN SPS

K_L**EVER** target sensitivity:

5 years starting Run 4

 $60 \text{ SM } K_L \to \pi^0 vv$ $S/B \sim 1$

 $\delta BR/BR(\pi^0 vv) \sim 20\%$

Main detector/veto systems:

- **UV/AFC** Upstream veto/Active final collimator
- LAV1-25 Large-angle vetoes (25 stations)
 - **MEC** Main electromagnetic calorimeter
 - **SAC** Small-angle vetoes
 - **CPV** Charged particle veto
 - **PSD** Pre-shower detector

Neutral beam and beamline

- 400 GeV *p* on 400 mm Be target
- Production angle $\theta = 8.0 \text{ mrad}$
- Solid angle $\Delta \theta = 0.4$ mrad
- $2.1 \times 10^{-5} K_L/\text{pot}$ in beam
- $\langle p(K_L) \rangle = 40 \text{ GeV}$
- Probability for decay inside FV ~ 4%
- Acceptance for $K_L \rightarrow \pi^0 v v$ decays occurring in FV ~ 5%

10¹⁹ pot/year (= 100 eff. days) **E.g.: 2** × **10¹³ ppp/16.8 s**

- **4 collimation stages** to minimize neutron halo, including beam scattered from absorber
- Photon absorber in dump collimator

× 5 years
$$\longrightarrow 60 K_L \rightarrow \pi^0 vv$$
 events

Neutral beam simulation

29/08/2019 M. Mirra

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS 11

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , *n* interactions
- Shower depth information: improved time resolution for EM showers

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS 29/08/2019 M. Mirra 12

PANDA/KOPIO prototypes:

- $\sigma_E / \sqrt{E} \sim 3\% / \sqrt{E} (\text{GeV})$
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_{\rm r} \sim 13 \, {\rm mm} \, / \sqrt{E} \, ({\rm GeV})$

Mispaired $K_L \rightarrow \pi^0 \pi^0$ events

Distance from FV to MEC significantly helps for rejection of "odd" background

- Most $K_L \rightarrow \pi^0 \pi^0$ decays with lost photons occur just upstream of the MEC
- " π^0 s" from mispaired γ s are mainly reconstructed upstream of true position

Preshower detector (PSD) is particularly effective against downstream decays

Vetoes for upstream $K_L \rightarrow \pi^0 \pi^0$

Upstream veto (UV):

- 10 cm < r < 1 m:
- Shashlyk calorimeter modules à la PANDA/KOPIO, like MEC

Active final collimator:

- 4.2 < r < 10 cm
- LYSO collar counter
- 80 cm long
- Internal collimating surfaces
- Intercepts halo particles from scattering on upstream collimators or γ absorber Rejects π^0 s from inelastic interactions
- Rejects $K_L \rightarrow \pi^0 \pi^0$ in transit through collimator

29/08/2019 M. Mirra

Large-angle photon vetoes

25 new large-angle photon veto stations (LAV)

- 5 sizes, sensitive radius 0.85 to 1.5 m, at intervals of 4 to 5 m
- Hermetic coverage out to 100 mrad Need good detection efficiency at low energy $(1 - \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$
- Baseline technology: Lead/scintillator tile with WLS readout Based on design of CKM VVS Assumed efficiency based on E949 and CKM VVS experience

Small-angle photon veto

Small-angle photon calorimeter system (SAC)

- Rejects high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons

Beam comp.	Rate (MHz)	Req. 1 – ε
$\gamma, E > 5 \text{ GeV}$	50	10 ⁻²
$\gamma, E > 30 \text{ GeV}$	2.5	10 ⁻⁴
n	430	—

Baseline solution:

• Tungsten/silicon-pad sampling calorimeter with crystal metal absorber to exploit enhancement of photon conversion by coherent interaction with lattice

Efficient γ conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

- **1. Beam photon converter in dump collimator** Effective at converting beam γ s while relatively transparent to K_L
- 2. Absorber material for small-angle calorimeter (SAC) Must be insensitive as possible to high flux of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

AXIAL group is collaborating with KLEVER on test beam measurement of pair-production enhancement in crystals

1 week of beam: 8-15 August 2018. Test beam setup for tagged photons from 120 GeV e⁻:

29/08/2019 M. Mirra

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS 18

Basic signal selection

No hits in UV, AFC, LAV, SAC + fiducial volume (FV) and p_{\perp} cuts

29/08/2019 M. Mirra

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS 19

Additional background rejection

29/08/2019 M. Mirra

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS 20

Status and timeline

Project timeline – target dates:

2017-2018	Project consolidation and proposal		
	 Participation in Physics Beyond Colliders 		
	 Beam test of crystal pair enhancement 		
	 Input to European Strategy for Particle Physics 		
2019 Q3	Expression of Interest to CERN SPSC		
2020 Q2	Conclusion of European Strategy update		
	KLEVER proposal		
2019-2021	Detector R&D		
2021-2025	Detector construction		
	• Possible K12 beam test if compatible with NA62		
2024-2026	Installation during LS3		
2026-	Data taking beginning Run 4		

Most groups participating in NA62 have expressed interest in KLEVER We are actively seeking new collaborators!

Summary and outlook

$K \rightarrow \pi v v$ is a uniquely sensitive indirect probe for high mass scales

• Need precision measurements of both K^+ and K_L decays

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ vv$) in short term, ultimately reaching ~100 event sensitivity

KOTO is making significant progress in background reduction and will reach SM sensitivity to BR($K_L \rightarrow \pi^0 vv$) by 2025

Design studies indicate that an experiment to measure $BR(K_L \rightarrow \pi^0 vv)$ can be performed at the SPS in Run 4 (2026)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with $S/B \sim 1$
- KLEVER is preparing Expression of Interest to CERN SPSC and is actively seeking new collaborators