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1. Introduction

One of the main problems of cosmology is the problem of singularities.

There are many approaches to construct non-singular models, but usually it

is difficult to avoid singularities under some generic conditions.

Besides, there are various types of singularities with quite different

properties (like Big-Rip, Sudden Future, Finite Scale Factor, Little-Rip etc.)

not necessarily geodesically incomplete ("weak singularities").

Main concern of this talk:

Is it possible to construct a cyclic universe with no singularities or

”weaker” singularities? (multiverse in time)

Is it possible to construct any classical or quantum ”cyclic parallel

universes” scenario? (multiverse in space & time)

Are there any effects which link these parallel universes? Are they

observable in our universe?
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2. Dynamical constants vs singularities in cosmology.

According to Hawking and Penrose (1973) a spacetime is singular if there

exists at least one geodesic which is incomplete i.e. which cannot be

extended in at least one direction and has only a finite range of affine

parameter (proper time or length for non-null geodesics).

This is a kind of “minimalistic” approach which does not tell us the full

nature of these singularities: e.g. how they influence the physical and

geometrical quantities.

An interesting set of alternative/extended gravity cosmologies are

dynamical constants cosmologies which have been applied to solve some

standard cosmology problems such as the horizon and flatness problem (e.g.

Moffat 1993, Albrecht, Magueijo 1999; Barrow 1999, Uzan 2003).

Our underlying idea was to apply dynamical constants to remove or to

change the strength of singularities in cosmology (MPD, Marosek 2013;

MPD, Balcerzak, Marosek 2014).
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Variety of singularities: strength.

Tipler’s (Phys. Lett. A64, 8 (1977)) definition (of a strong singularity):

Iij(τ) =
∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′|Ri

ajbu
aub|

diverges on the approach to a singularity at τ = τs

i.e. an extended object is crushed to zero volume (represented by three

linearly independent, vorticity-free geodesic deviation vectors at p parallely

transported along causal geodesic l) at the singularity by infinite tidal forces

Królak’s (CQG 3, 267 (1988)) definition (of a strong singularity):

Iij(τ) =
∫ τ

0
dτ ′|Ri

ajbu
aub|

diverges on the approach to a singularity at τ = τs

i.e. the expansion of every future-directed congruence of null (timelike)

geodesics emanating from point p and containing l becomes negative

somewhere on l

For null geodesics one replaces Riemann by the Ricci tensor components.
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Variety of singularities: strength (MPD 2015).

Type Name t sing. a(ts) ̺(ts) p(ts) ṗ(ts) etc. w(ts) T K

0 Big-Bang (BB) 0 0 ∞ ∞ ∞ finite strong strong

I Big-Rip (BR) ts ∞ ∞ ∞ ∞ finite strong strong

Il Little-Rip (LR) ∞ ∞ ∞ ∞ ∞ finite strong strong

Ip Pseudo-Rip (PR) ∞ ∞ finite finite finite finite weak weak

II Sudden Future (SFS) ts as ̺s ∞ ∞ finite weak weak

IIg Gen. Sudden Future (GSFS) ts as ̺s ps ∞ finite weak weak

III Finite Scale Factor (FSF) ts as ∞ ∞ ∞ finite weak strong

IV Big-Separation (BS) ts as 0 0 ∞ ∞ weak weak

V w-singularity (w) ts as 0 0 0 ∞ weak weak

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From varying constants to the entangled cyclic multiverses – p. 7/54



Dynamical constants G(t) and c(t) vs singularities

We considered the simplest theory for the generalized Einstein-Friedmann

equations in varying speed of light (VSL) theories (Barrow & Magueijo model -

1999) and varying gravitational constant G theories (̺ - mass density;

ε = ̺c2(t) - energy density)

̺(t) =
3

8πG(t)

(
ȧ2

a2
+

kc2(t)

a2

)
, (1)

p(t) = − c2(t)

8πG(t)

(
2
ä

a
+

ȧ2

a2
+

kc2(t)

a2

)
, (2)

and the energy-momentum “conservation law” is (related to 2nd law of

thermodynamics)

˙̺(t) + 3
ȧ

a

(
̺(t) +

p(t)

c2(t)

)
= −̺(t)

Ġ(t)

G(t)
+ 3

kc(t)ċ(t)

4πGa2
. (3)
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"All-in-one" scale factor.

We used a general form of the scale factor (MPD, K. Marosek, JCAP 02 (2013),

012), which allows for big-bang, big-rip, sudden future, finite scale factor and

w-singularities and reads as

a(t) = as

(
t

ts

)m

exp

(
1− t

ts

)n

, (4)

with the constants ts, as,m, n.

For 0 < m < 2/3 we have a big-bang singularity - a → 0, ̺ → ∞, p → ∞ at

t → 0;

For m < 0 we have a big-rip singularity - a → ∞, ̺ → ∞, p → ∞ at t = 0;

For 1 < n < 2 we have a sudden future singularity (SFS) which appears at

t = ts (a = as, ̺ = const., p → ∞);

For 0 < n < 1 we have a (stronger) finite scale factor singularity (FSF) at

t = ts (a = as, ̺ → ∞, p → ∞).
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More examples of regularizing other singularities

To remove SFS: light has to stop moving at the singularity (same happens

in loop quantum cosmology (LQC) where it is called the anti-newtonian

limit c = c0
√
1− ̺/̺c → 0 for ̺ → ̺c with ̺c being the critical density

(Cailettau et al. 2012). The low-energy limit ̺ ≪ ̺0 gives the standard

limit c → c0).

To regularize an SFS, FSF by varying gravitational constant G(t) - the

strength of gravity has to become infinite at a singularity (seems

reasonable because of the requirement to overcome an infinite (anti-)tidal

forces at the singularity).

However, it makes another singularity - a singularity of strong coupling

for a physical field such as G ∝ 1/Φ.

Such problems were already dealt with for example in superstring and brane

cosmology where both the curvature singularity and a strong coupling

singularity appeared.
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3. Dynamical constants and cyclic universes.

An idea is similar to some superstring/brane universe evolution scenarios

like the ekpyrotic/cyclic models (Khoury et al. 2001, Steinhardt et al.

2002, Turok et al. 2005 etc.) where one has some special coupling of a

scalar field β(φ) of gravity in the Lagrangian of a 4-dimensional theory

(Einstein frame)

S =

∫
d4x

√−g

[
c4

16πG
R− 1

2
∂µφ∂

νφ− V (φ) + β4(φ)(̺R + ̺m)

]
,

(5)

where the potential has an explicit form as

V (φ) = V0

(
1− e−sφ

)
F (φ), F (φ) ∝ e−

1

gs , (6)

(̺R is the energy density of radiation while ̺m is the energy density of

matter, gs - dilaton/string coupling constant) which leads to cyclic models

of the universe.
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Dynamical constants and cyclic universes.

We construct cyclic models using the idea of dynamical physical

constants instead of the special coupling (MPD & Marosek 2013) using

eqs. (1), (2), and (3).

First we assume that that the gravitational constant G varies (and ċ = 0) as

G (t) =
G0

a2(t)
, (7)

and for the positive curvature (k = +1) we obtain sinusoidal pulse

Friedmann model with the scale factor

a(t) = a0

∣∣∣∣sin
(
π
t

tc

)∣∣∣∣ (8)

with a0 =const., so the scale factor is ”singular” (reaching zero as in the

big-bang scenario).
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Sinusoidal pulse model: a(t), G(t).
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Dynamical constants and cyclic universes.

The mass density ρ(t) and the pressure p(t) are nonsingular and oscillatory

ρ (t) =
3

8πG0



π2a20 cos

2
(
π t

tc

)

t2c
+ c2


 ≥ 0, (9)

p (t) = − c2

8πG0



3π2a20 cos

2
(
π t

tc

)

t2c
+ c2 − 2

π2a20
t2c


 . (10)

For these models the null energy condition is always fulfilled (a ”singular

bounce”).

p(t) + ρ(t)c2 = p(mtc) ≡ pa ≥ 0 m = 0, 1, 2, 3, ... (11)

The same is true for the weak energy condition which additionally requires

(9) (ρ ≥ 0).
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Sinusoidal pulse model: density and pressure.

Strong energy condition is also fulfilled

ρ (t) c2 + 3p (t) =
3a0

2πc2

4G0tc
2 sin2

(
π
t

tc

)
≥ 0, (12)

and the universe is decelerating (ä < 0).
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Dynamical constants and cyclic universes.

In fact, in our model we have no proper bounce in the scale factor since

Ḣ = −π2

t2c
− ȧ2

a2
< 0. (13)

Defining

HG =
Ġ

G
= −2

ȧ

a
= −2H (14)

we can see that ḢG > 0 always accompanies Ḣ < 0 (a contraction of

space is always balanced by an expansion of gravity) which makes an

apparently singular and sharp bounce regular in matter density and pressure

due to the special form of running gravity.

In general, the strong energy condition means that gravity is attractive, but

in our case its atractivity is overbalanced by the strong coupling of G(t)

at the Big-Bang type of singularity (G → ∞).
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Dynamical constants and cyclic universes.

Another interesting case is the tangential pulse model with the scale factor

a(t) = a0

∣∣∣∣tan
(
π
t

ts

)∣∣∣∣ , (15)

which can be accompanied by the gravitational constant varying as

G (t) =
4Gs

sin2
(
2π t

ts

) . (16)

This scale factor is infinite (a → ∞) for t = nts with n = 1/2, 3/2, 5/2, . . .

(like at big-rips) and it is zero for t = mts with m = 0, 1, 2, 3, . . . (like at

big-bangs) so that we can say that we face ”singular bounces”.

Each time the scale factor a(t) attains a singular value (vanishes or reaches

infinity), the gravitational coupling becomes infinite (G → ∞).
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Tangential pulse model - a(t), G(t).
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Dynamical constants and cyclic universes.

The mass density and pressure are nonsingular

ρ (t) =
3

8πGs


π

2

t2s
+

3c2 cos4
(
π t

ts

)

a20


 ≥ 0, (17)

p (t) = − c2

8πGs


π

2

t2s
+ 4

π2 sin2
(
π t

ts

)

t2s
+

c2 cos4
(
π t

ts

)

a20


 ,

(18)

The null energy condition is satisfied at t = mts (Big-Bang-like sings) and

violated at t = nts (Big-Rip-like sings):

c2ρ (t) + p (t) =
c2

4πGs


π

2

t2s
− 2

π2 sin2
(
π t

ts

)

t2s
+ 4

c2 cos4
(
π t

ts

)

a20


 .

(19)
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Tangential pulse model: density and pressure.
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Dynamical constants and cyclic universes.

It proves that the former is a Big-Rip-like singularity and the latter is a

Big-Bang-like singularity. The word "like" comes from the fact that the

mass density and pressure are regular which is not the case at a Big-Bang

and a Big-Rip.

The pressure at both of these singularities p(mts) and p(nts) is negative.

The strong energy condition reads as

c2ρ (t) + 3p (t) =
3c2

4πGs



c2 cos4

(
π t

ts

)

a20
− 2

π2 sin2
(
π t

ts

)

t2s


 (20)

so that

c2ρ (mts)+3p (mts) =
3c4

4πGsa02
≥ 0, c2ρ (nts)+3p (nts) = − 3c2

2πGsts
2 ≤ 0.
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4. Thermodynamics and a toy cyclic multiverse.

Using previous cyclic models pattern we now develop an idea of two

independently evolving universes (doubleverse) which allow the same

evolution of the scale factor but different evolution of the physical

constants in each universe.

The idea based on the thermodynamics of varying c and varying G

universes. We assume that the multiverse obeys the 2nd law of

thermodynamics, though individual universes may not do so.

From thermodynamical interpretation we conclude that the entropy can be

related to varying constants as (e.g. Youm 2002)

S(t) = 2
NkB
w̃

ln [A0c(t)], S(t) = NkB ln

[
A0

G(t)

]
, (21)

where A0 is an integration constant (and can also be taken to be one), kB -

Boltzmann constant, w̃ - barotropic index, N -number of particles.

From varying constants to the entangled cyclic multiverses – p. 22/54



Cyclic multiverse - varying c.

As first step assume that the entropy of the multiverse is constant:

Ṡ =
n∑

i=1

Ṡi = Ṡ1 + Ṡ2 + Ṡ3 + ...+ Ṡn = 0. (22)

For the “doubleverse” we have:

S1 =
2

w̃
N1kB ln [c1(t)], (23)

S2 =
2

w̃
N2kB ln [c2(t)]. (24)

Make the following ansätze for c(t):

c1 (t) = eλ1φ1(t), (25)

c2 (t) = eλ2φ2(t), (26)

where λ1 and λ2 are constants.
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Cyclic multiverse.

The total entropy of the doubleverse is

S = S1 + S2 = 2
ρ̃1V1c

2
1

T1
λ1φ1 + 2

ρ̃2V2c
2
2

T2
λ2φ2 (t) . (27)

For simplicity we take (solves exactly):

˜̺1V1c
2
1

T1
λ1 =

˜̺2V2c
2
2

T2
λ2 , (28)

and using

N1λ1 = N2λ2 . (29)

This allows to pick up the following functional dependence:

φ1 (t) = sin2
(
π
t

ts

)
, (30)

φ2 (t) = cos2
(
π
t

ts

)
, (31)
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Cyclic multiverse - varying c.

So that the entropies are

S1 =
2

w̃
N1kBλ1 sin

2

(
π
t

ts

)
, (32)

S2 =
2

w̃
N2kBλ2 cos

2

(
π
t

ts

)
. (33)

Two scale factors evolutions are equal and of the similar form as in cyclic

universe models of the previous section:

a(t) = a1 (t) = a2 (t) = a0

∣∣∣∣sin
(
π
t

ts

)∣∣∣∣ (34)

Their evolution is evidently cyclic.

The point is that although the geometrical evolution of the ”parallel”

universes is the same, this is not the case with the evolution of the

physical constants c1(t) and c2(t) which is evidently different.
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Total entropy remains constant.

Similar considerations are valid for the models with varying G.
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5. Inter-universal entanglement in the multiverse.

Now we assume that the universes 1 and 2 are quantum mechanically

entangled and there are periods of their evolution when the entanglement

matters (e.g. at the maximum expansion point) and influences the behaviour

of individual universes, though most of the evolution of the individual

universes is classical.

It means that we consider the multiverse with two patches - the universes

1 and 2 which can be understood in the hierarchy given by Tegmark (2003)

from level I (separate inflationary patches) to IV.

These two patches are classically disconnected, but they can be quantum

mechanically entangled (Robles-Perez et al. 2010, 2014, 2015) and the

effect of entanglement can be imprinted in individual universes (for

example in CMB spectrum, large-scale structure etc.).
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Sinusoidal pulse multiverse entanglement.

For the previously considered sinusoidal pulse model we write the Friedmann

equation in the form

H2 = −Λ +
1

a2
, (35)

where

Λ ≡ π2

t2c
and a0 =

1√
Λ
, (36)

while for the tangential pulse

H2 =
1

a2
(
1 + Λa2

)2
= Λ2a2 + 2Λ +

1

a2
, (37)

where the first term on the right-hand side scales as phantom.
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Wheeler-deWitt (second) quantization

Getting conjugate momentum as

pa = −a
da

dt
, (38)

the Hamiltonian constraint

p2a − ω2(a) = 0, (39)

can easily be derived from the Friedmann equations as

ω2
sin(a) ≡ a2 − Λa4. (40)

for the sinusoidal pulse and as

ω2
tan(a) ≡ Λ2a6 + 2Λa4 + a2. (41)

for the tangential pulse.
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Wheeler-deWitt (second) quantization

The Wheeler-DeWitt equation is formally similar to the Klein-Gordon equation

φ̈+ ω2(a)φ = 0, (42)

where φ ≡ φ(a) is the wave function and φ̇ ≡ dφ
da

. The WKB solutions of (42)

(where two signs correspond to two different branches of the universe)

φ± ∝ 1√
2ω

e±iS , (43)

where, Ṡ = ω. For the sinusoidal pulse, we get

S =

∫
daωsin(a) = −

(
1− Λa2

) 3

2

3Λ
. (44)

For a ∈ (0, a0), the WKB wave function (43) represents a Lorentzian (classical)

universe; for a > a0, the wave function represents an exponential decay of the
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Sinusoidal branches

We thus obtain two classical branches

a(t) =
1

h
sin[h(t− t0)], (45)

and the other with scale factor given by

a(t) =
1

h
sin[h(t0 − t)], (46)

which are related by time symmetry, t → −t (t0 → −t0).

The same universe for any internal observer provided that: 1. the universes

are created in entangled pairs; 2. observers’ time variables follow an

antipodal-like symmetry (e.g. Linde1988, Robles-Perez 2014).

Before reaching the big crunch singularities, one branch of the universe

can undergo a quantum transition to the the other branch universe,

appearing there as a newborn universe, forming thus a continuous cyclic
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Quantum transitions between universes in the multiverse
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Tangential branches

For the tangential pulse, we arrive at

S =

∫
daωtan(a) =

1

4
a2
(
2 + Λa2

)
. (47)

Analogously as for the sinusoidal pulse, the evolution that corresponds to the

plus and minus signs of φ± in (43) is given now by

da

dt
= ±

(
h2a2 + 1

)
. (48)

We thus obtain

a(t) =
1

h
tan[h(t− t0)], (49)

and

a(t) =
1

h
tan[h(t0 − t)], (50)

for the two branches of the tangential pulse.
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Creation of cyclic universes in entangled pairs.

Quantum effects dominant close to a = 0 (though p and ̺ regular) - say at

a = amin.

For a < amin - no real solution found. Only double Euclidean instantons

appear.

They give rise (in the Lorentzian regime) to an entangled pair of universes

whose quantum states are quantum-mechanically correlated.

Observer living in the universe with time t1 considers his branch expanding;

the one with t2 - contracting.

Both observers see their universes expanding (antipodal symmetry) - two

branches can be combined to form a universe that is classically

indistinguishable from the cyclic single time picture.
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Quantum creation of entangled pairs of the universes
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Third quantization procedure of WdW equation - 3Q

QFT formalism in which WdW wave function φ becomes an operator.

This is due to fact that WdW equation (42) can be obtained from the

Hamilton eqs of the (third-quantized) Hamiltonian

H =
1

2
P 2
φ +

ω2(a)

2
φ2, (51)

where, Pφ ≡ φ̇.

3Q makes φ and Pφ operators.

We have

φ̂(a) =
1√
2ω

eiS(a)b̂+ +
1√
2ω

e−iS(a)b̂†−, (52)

where, b̂+ ≡ b̂+(amin) and b̂†− ≡ b̂†−(amin), are constant operators given at

some initial value, a = amin.

From varying constants to the entangled cyclic multiverses – p. 36/54



Universe annihilation and creation operators

"-" branch a(t) = 1
h
sin[h(t− t0)] - b̂− and b̂†−

"+" branch - b̂+ and b̂†+

similarly for the tangential pulse

analogue of creation an entangled pairs of particles with opposite

momentum ±k

symmetry of WDW equation wrt ±ω is translated into symmetry ±φ in

3Q picture
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Representations of the multiverse vacua: b and c representations

Vacuum state for (b±, b
†
±) representation – given by |0+, 0−〉.

Not unique because of scale factor dependence of ω = ω(a) (along

minisuperspace geodesic).

An invariant representation for the harmonic oscillator like (42) is (Lewis

and Riesenfeld JMP, 1458 (1969), Robles-Perez and Gonzalez-Diaz 2010,

2014)

c+ =

√
1

2

(
1

R
φ+ i(RPφ − Ṙφ)

)
, (53)

c†− =

√
1

2

(
1

R
φ− i(RPφ − Ṙφ)

)
, (54)

where R =
√
φ2
1 + φ2

2, with φ1 and φ2 being two real solutions of (42)

satisfying

φ1φ̇2 − φ̇1φ2 = 1. (55)
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Representations of the multiverse vacua: b̂ and ĉ representations

ĉ−representation defines an invariant vacuum state independently of the

classical evolution of the universe

in b̂−representation there is creation or annihilation of pairs of the

universes with well-determined value of the momentum in minisuperspace

representations related by Bogoliubov transformations

ĉ− = αb̂− − βb̂†+, (56)

ĉ†− = α∗b̂− − β∗b̂+, (57)

where α, β - Bogoliubov coefficients fulfill | α |2 − | β |2= 1.
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Invariant representation of vacuum

In terms of the invariant representation (53)–(54), the Hamiltonian (51) reads

H = H−
0 +H+

0 +HI , (58)

where

H±
0 = Ω(a)

(
c†±c± +

1

2

)
, (59)

and,

HI = γ(a)c†+c
†
− + γ∗c+c−, (60)

is the Hamiltonian of interaction (describing a non-local interaction by an

entangled pair) of the universes while

Ω(a) =
1

4

(
1

R2
+R2ω2 + Ṙ2

)
, (61)

γ(a) = −1

4

{(
Ṙ+

i

R

)2

+ ω2R2

}
. (62)
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Entanglement thermodynamics - general framework

The multiverse is in the vacuum state described by the ground state of the

invariant representation in the minisuperspace, |0+0−〉c - a pure state with

zero entropy - evolves unitary so that the entropy is constantly zero.

However, there is non-zero entropy of entanglement in each single

universe (for an internal observer) which eventually can give rise to an

arrow of time.

The state of the universe for an internal observer in terms of

b-representation reads (Robles-Perez and Gonzalaez-Diaz 2014)

|0+0−〉c =
1

|α|

∞∑

n=0

( |β|
|α|

)n

|n−, n+〉b, (63)

where |n−, n+〉b are the entangled mode states of the b-representation, and

α and β are the Bogoliubov coefficients that relate both representations

(|α|2 − |β|2 = 1)

ĉ− = αb̂− − βb̂†+, ĉ†− = α∗b̂†− − β∗b̂+. (64)From varying constants to the entangled cyclic multiverses – p. 41/54



Entanglement thermodynamics

The quantum state of a single universe of the entangled pair can be obtained

by tracing out the degrees of freedom of the partner universe

ρ− = Tr+ρ ≡
∞∑

n=0

b〈n+|ρ|n+〉b, (65)

where the density matrix is

ρ = |0+0−〉c〈0+0−| =
1

|α|2
∑

n,m

( |β|
|α|

)n+m

|n−, n+〉b〈m−,m+|. (66)

As a result we get a thermal state (Robles-Perez and Gonzalez-Diaz 2014)

ρ− =
1

|α|2
∑

n,m,l

( |β|
|α|

)n+m

〈l+|m+〉|n−〉b〈n−|〈m+|l+〉 =
1

Z

∑

n

e−
ω
T
(n+ 1

2
)|n−〉b〈n−|,

(67)

where the partition function Z−1 = 2 sinh ω
2T .
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Entanglement thermodynamics

Now we have the temperature of entanglement

T ≡ T (a) =
ω(a)

2 ln coth r
, tanh r ≡ |β|

|α| , (68)

where r – the entanglement parameter (Nakagawa 2016, Baskal 2016).

The entropy of entanglement is given by the von Neumann formula (Horodecki

et al. 2009, Nakagawa 2016, Baskal 2016)

S(ρ) = −Tr (ρ ln ρ) , (69)

applied to the thermal state ρ−, and yields (Robles-Perez and Gonzlez-Diaz 2014)

Sent(a) = cosh2 r ln cosh2 r − sinh2 r ln sinh2 r. (70)
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Entanglement thermodynamics - key points

We obtained a thermal state of a single universe of an entangled pair

for an internal observer from the zero entropy vacuum state of the

superspace of an external observer.

The entropy of entanglement for a single universe observer depends on the

scale factor - it is not unitary due to non-local interaction producing

entanglement.

For an external observer the evolution of an entangled pair is unitary - no

information paradox.

The mean value of the Hamiltonian Ĥ− = ω(b̂†−b̂− + 1/2) is

E−(a) ≡ 〈Ĥ−〉 = Trρ̂−Ĥ− = ω

(
〈N̂(a)〉+ 1

2

)
, 〈N̂(a)〉 = sinh2 r.

(71)

From varying constants to the entangled cyclic multiverses – p. 44/54



Entanglement quantities - sinusoidal pulse

For the sinusoidal entangled pair of the universes we have

α =
1

2

(
1

R
√
ω

+R
√
ω − iṘ√

ω

)
, (72)

β = −1

2

(
1

R
√
ω

−R
√
ω − iṘ√

ω

)
, (73)

with the WKB solutions

φ1 =
1√
ω
cosS, φ2 =

1√
ω
sinS, (74)

which yields R
√
ω = 1, and

α = 1 +
iω̇

4ω2
, β = − iω̇

4ω2
, (75)

with |α|2 − |β|2 = 1, and Ṙ = − 1
2 ω̇ω

− 3

2 .
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Entanglement quantities - sinusoidal pulse

We then obtain

tanh r =
|β|
|α| =

ω̇√
16ω4 + ω̇2

=
1√

1 +
(
4ω2

ω̇

)2 , (76)

with, ω̇ ≡ dω
da

, and ω(a) given by (40), so that

tanh r =
1√

1 + 16a4 (1−Λa2)3

(1−2Λa2)2

≡ q. (77)

Finally we have for the temperature and entropy of entanglement

T = −a
√
1− Λa2

2 ln q
, (78)

S =
1

1− q2
ln

[
1

1− q2

]
− q2

1− q2
ln

[
q2

1− q2

]
. (79)
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Entropy of entanglement - results (sinusoidal pulse)

Result: Entropy is large (infinite) for big-bang (a = 0), big-crunch (a = 2 -

not plotted) and also for the maximum expansion (!!!) (a = 1) regions
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Creation of entangled pairs at maximum expansion
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Entropy of entanglement - results (tangential pulse).

Result: Entropy is large (infinite) for big-bang (a = 0) region, but vanishes

for big-rip (a = ∞) region!

Problem: Is the entropy of entanglements the proper measure of

quantumness? (We know big-rip achieves Planck density)
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Results: temperature of entanglement - sinusoidal pulse

Scale factor (blue, dotted), entanglement parameter q (green, dashed), entropy of

entanglement (yellow, solid line), and temperature of entanglement (red,

dot-dashed) for the sinusoidal pulse. Unlike the entropy of entanglement, the

parameter q turns out to be a non-divergent (finite) measure of the

entanglement. From varying constants to the entangled cyclic multiverses – p. 50/54



Results: temperature of entanglement - tangential pulse.

Scale factor (blue, dotted), entanglement parameter q (green, dashed), entropy of

entanglement (yellow, solid line), and temperature of entanglement (red,

dot-dashed) for the tangential pulse. The temperature of entanglement can be an

indicator of the quantumness of the universes.
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Observational signatures of the multiverse.

Bearing in mind a harmonic oscillator analogue of the WdW equation one

may calculate the entanglement energy

E =
ωeff

2
= ω

(
sinh2 r +

1

2

)
, (80)

which is analogous to a quantized oscillator in a vacuum state related to the

frequency ω = ω(a) in eq. (42) when there is no entanglement i.e. if r = 0.

An analogue of the Friedmann equation (39) for an entangled universe

would then be
da

dt
=

ωeff

a
=

ω

a

(
1 + 2 sinh2 r

)
(81)

which gives a quantum entanglement correction to the classical evolution

of a universe contained in the multiverse.

From varying constants to the entangled cyclic multiverses – p. 52/54



Observational signatures of the multiverse.

Quantum entanglement effect of the multiverse can be observed due to an

appropriate term of quantum interaction in any universe of the multiverse

i.e. also in Our Universe.

Practical realization by an extra term in the Friedmann equation

H2 = (8πG/3c4)ρ+ quantum entanglement (82)

entanglement signal can be imprinted in the spectrum of the cosmic

microwave background (CMB) in the form of an extra dipole which is a

cause of dark matter flow (Mersini-Houghton, Holman 2008; Kinney 2016)

entanglement also influences the potential of a scalar field which drives

cosmological inflation and so a change of the CMB temperature (Di

Valentino, Mersini-Houghton 2017, 2018; Bouhmadi-Lopez 2018)
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6. Conclusions

Using varying constants (c,G) theories we created cyclic universes and

extended them into the cyclic multiverse scenarios with same geometry

and different evolution of the coupling constants still obeying the overall

2nd law of thermodynamics (”dobubleverses”).

Quantum methods (from 2nd (WDW) to the 3rd quantization scheme)

allowed us to consider possible cyclic universes’ pair creation and their

quantum entanglement.

The entropy of entanglement is large at small values of the scale factor

a ≈ 0 (big-bang, big-crunch) as well as at the maximum expansion point

a ≈ amax suggesting strong ”quantumness” of these minisuperspace points.

The entropy of entanglements vanishes at large values of the scale factor

a → ∞ (big-rip) despite presumably strong ”quantumness” of this point.

However, the temperature of entanglement is large for this point and

perhaps is more appropriate to measure its ”quantumness”.
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