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Divergent perturbative expansions

m Perturbative QCD yields power series in « for observable
quantities

o0
Z anan+1 (1)
n=0

m These series are expected to be divergent
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m Nonetheless they are expected to be asymptotic to the true value
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Superasymptotic series

m We are forced to truncate the series at some order

N
> apatt 2
n=0

m It is then natural to ask oneself what is the optimal truncation order

N+1
m Superasymptotic series
m For example the Stieltjes function has the asymptotic expansion

o0

— * —t ~ _ 1\ p1 0 tL
S(a) a/o deti— s(a) nz::o( 1)nla (3)
Nimin 1
S(e)n =D _(-1)"nla™ Ny ~ - (4)
n=0

= We find 5(1/10) = 0.0915633 and Sy(1/10) = 0.0915819
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The OPE and condensates

m In Phys.Rev.Lett.113,092001 Bali et al. considered the OPE-s of the
average plaquette and the binding energy of a B meson in the heavy
quark mass limit

e 2
(PYmc =Y P! + 22 Ca(0)a*(0a) + O(*)  (5)
n=0
1& —
Emc(a) = > cna™ 4 A+ O(aNgep) (6)
n=0

m The authors truncated the series around the numerically minimal term
and used them to obtain the gluon condensate and A

-1 N
(0g) = 2 1) <<P>Mc - ana"“) LN (1)
n=0

N

— 1
A= Emc(a) -7 > ™ 4+ O(aNgep) (8)
n=0
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Ambiguities in truncation

m Truncation is inherently ambiguous. No absolute rule that sets the exact
truncation order

m Truncated sums have a dependence on the renormalization scale and scheme

m Coming back to the condensates of the previous slide, these ambiguities will
also see themselves reflected in the condensates

1, N
(O6)n = % ((P)Mc - gopn ) + O(a*Nyep) 9)

An = Emc(e) — = Z cra™ + O(aNycp) (10)

m The goal of our work is to estimate condensates of the OPE subtracting
perturbative expansions to observables, but instead of truncating the series we
will explore Borel summation

(Oc)ey - 2 ) (<P> cf{zpna }

) +0(a*Ngep)  (11)
PV
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Apv = Enc(a) - - {Z a1+ O(ahgep) (12)

n=0
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Borel summation

m From a divergent series we can construct a Borel transform

R~ Z apa™tt (13)
n=0
Xa
R= 2; e (14)
=

m The Borel transform R has a finite radius of convergence. Then one
considers its analytic continuation and a Laplace transform of it

o X
/0 dte t/*R (15)

m There are singularities in the integration path of the Laplace transform
m Contour deformation needed to avoid them. In this work | will
consider the principal value (PV) prescription

PV/ dte t/*R (16)
J0
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PV vs truncation

m |t can be seen that the PV Borel sum is renormalization scale
and scheme independent as opposed to truncation schemes

m One huge disadvantage, in principle we need to know all the
coefficients of a perturbative expansion

m On the contrary, truncation can always be carried out
m Quite interestingly, it is possible to relate truncated sums of
perturbative series with their principal value Borel sums

m Method 1 which uses the so called Dingle's theory of

terminants
m Method 2 uses results from Phys.Rev.D69,125006

m Due to time constraints and because it's more promising | will
only talk about method 1
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m Based on Dingle’s theory of terminants

N N
PV = Z a4 T+ Z (an — amasymp)™ ™t + T/ ...
=0 n=N+1

m Terminant related to leading diverngence of the coefficients

(=1NHL g [ (NHLHK

anasympt = A"(—1)"(n + k)! — TlETA + /0 dteit/&1+At
0 tN+1+k
anasympt = AN(n+ k)l = T = — dr et/ T

m If N is such that we have truncated at the minimal order the terminant has a power
expansion in o modulated by an exponentially suppressed term
m For the static potential in the large o approximation the leading terminant will be

—2:

e%ﬁ<#o+#1a+#mz+...>
m The subleading terminant will be
b

eFon (#g+#’ln+#’202+...>

m An expansion where we add exponentially suppressed terms to a superasymptotically
truncated series is called a hyperasymptotic expansion
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In QCD in general for a dimensionless observable we will have
d
" 1 1
-z n+db
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.
m Then the leading singularity of the coefficients will be
-~ 9 T(1+db+n) db
amaomne = 28, g od (11 db) {1 Yot
= Defining
Q(db) = ZX 1 (" e )P\//xdxe
OrQd od T(1+db) \2rd x WPV |
the terminant Q is
Q = AQ(db) + b1 AQ(db — 1) + waAQ(db — 2) + (25)
m We truncate the series at a’y ™" (y2) around the optimal order
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m Thus the principal value Borel sum of the observable can be written

d on 5 —db _
Seu(Q) = Se(Qi )+ v/ax( K oge e (M) (HK‘ Hox(u)+ ‘x‘_’z’ai(n)+0(ai(u)))+m

s
(31)
m In the large 5y approximation things simplify. For the static potential we would have
an oo —amu N+L Cr

Q=27 —2N“Pv/ du ePorxt Zy=-2"e7 32
Sur'y | vt 32)

where cx parametrizes the renormalization scheme in the large 5y approximation. Thus the hyperasymptotic

expansion for the PV Borel sum can be written like this
1 X 1
Vpy = Vp + ;Q + Z (Vi = Viasymp)a™ (1) + 791 T+ (33)
n=N+1

Q~rhgep U~ P (34)

m We will test this method for the static potential in the larget 3y approximation where we have a lot of analytic control

2 o\ U p
_ 12 r(1/2—u) Bo
B[V](t = X —) = =—t 35
Vi) = e (150) TR u= (3)
and we can compute the PV Borel sum exactly
00
Vpy = PV/ dt et/ BV(t) (36)
0

Xabier Lobregat

erasymptotic approximation to the OPE



Method 1
000®000000

The static potential in the large By approximation

m | consider the static potential in the large Sy approximation in
the MS scheme and the lattice scheme

m | fix 4 = 1/r and | consider two truncation points, the N that
makes ¢ smallest and still positive, and one order further
which will make ¢ the smallest posible in absolute value and

negative )
N = »B()T(l/f)(l — cax(1/r)) (37)

m We will see that the more terms we include in the
hyperasymptotic expansion either of these two truncation
points will converge to the same result
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Lattice Nf =3
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Comparing MS and lattice

For Nf =3 and r = 0.1GeV !
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Order of magnitude in the hyperasymptotic expansion

For MS with Nf =3
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Conclusions

m We have seen a method to hyperasymptotically approximate
the PV Borel sum of an observable

m We only need knowledge of the exact coefficients until the
perturbative series starts to diverge, and the structure of the
singularities in the Borel plane

m We have checked that the methods work for the static
potential in the large By approximation

m We mean to apply the same method to real QCD observables
and to use them to obtain condensates from the OPE
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