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Divergent perturbative expansions

Perturbative QCD yields power series in α for observable
quantities

∞∑
n=0

anα
n+1 (1)

These series are expected to be divergent

Nonetheless they are expected to be asymptotic to the true value
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Superasymptotic series

We are forced to truncate the series at some order

N∑
n=0

anα
n+1 (2)

It is then natural to ask oneself what is the optimal truncation order
N + 1
Superasymptotic series
For example the Stieltjes function has the asymptotic expansion

S(α) = α

∫ ∞
0

dt e−t
1

1 + αt
S(α) ∼

∞∑
n=0

(−1)nn!αn+1 (3)

S(α)N ≡
Nmin∑
n=0

(−1)nn!αn+1 Nmin ∼
1

α
(4)

We find S(1/10) = 0.0915633 and SN(1/10) = 0.0915819
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The OPE and condensates

In Phys.Rev.Lett.113,092001 Bali et al. considered the OPE-s of the
average plaquette and the binding energy of a B meson in the heavy
quark mass limit

〈P〉MC =
∞∑
n=0

pnα
n+1 +

π2

36
CG (α)a4〈OG 〉+O(a6) (5)

EMC (α) =
1

a

∞∑
n=0

cnα
n+1 + Λ +O(aΛ2

QCD) (6)

The authors truncated the series around the numerically minimal term
and used them to obtain the gluon condensate and Λ

〈OG 〉 =
36C−1G (α)

π2a4

(
〈P〉MC −

N∑
n=0

pnα
n+1

)
+O(a2Λ2

QCD) (7)

Λ = EMC (α)− 1

a

N∑
n=0

cnα
n+1 +O(aΛ2

QCD) (8)
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Ambiguities in truncation

Truncation is inherently ambiguous. No absolute rule that sets the exact
truncation order
Truncated sums have a dependence on the renormalization scale and scheme
Coming back to the condensates of the previous slide, these ambiguities will
also see themselves reflected in the condensates

〈OG 〉N =
36C−1G (α)

π2a4

(
〈P〉MC −

N∑
n=0

pnα
n+1

)
+O(a2Λ2

QCD) (9)

ΛN = EMC (α)− 1

a

N∑
n=0

cnα
n+1 +O(aΛ2

QCD) (10)

The goal of our work is to estimate condensates of the OPE subtracting
perturbative expansions to observables, but instead of truncating the series we
will explore Borel summation

〈OG 〉PV =
36C−1G (α)

π2a4

(
〈P〉MC −

[ ∞∑
n=0

pnα
n+1

]
PV

)
+O(a2Λ2

QCD) (11)

ΛPV = EMC (α)− 1

a

[ ∞∑
n=0

cnα
n+1

]
PV

+O(aΛ2
QCD) (12)
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Borel summation

From a divergent series we can construct a Borel transform

R ∼
∞∑
n=0

anα
n+1 (13)

R̂ =
∞∑
n=0

an
n!

tn (14)

The Borel transform R̂ has a finite radius of convergence. Then one
considers its analytic continuation and a Laplace transform of it∫ ∞

0
dt e−t/αR̂ (15)

There are singularities in the integration path of the Laplace transform
Contour deformation needed to avoid them. In this work I will
consider the principal value (PV) prescription

PV

∫ ∞
0

dt e−t/αR̂ (16)
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PV vs truncation

It can be seen that the PV Borel sum is renormalization scale
and scheme independent as opposed to truncation schemes

One huge disadvantage, in principle we need to know all the
coefficients of a perturbative expansion

On the contrary, truncation can always be carried out

Quite interestingly, it is possible to relate truncated sums of
perturbative series with their principal value Borel sums

Method 1 which uses the so called Dingle’s theory of
terminants
Method 2 uses results from Phys.Rev.D69,125006

Due to time constraints and because it’s more promising I will
only talk about method 1
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Method 1

Based on Dingle’s theory of terminants

PV =
N∑

n=0

anα
n+1 + T +

N′∑
n=N+1

(an − an;asymp)αn+1 + T ′ + . . . (17)

Terminant related to leading diverngence of the coefficients

an;asympt = An(−1)n(n + k)!→ T1 ≡
(−1)N+1

αk
AN+1

∫ ∞
0

dt e−t/α
tN+1+k

1 + At
(18)

an;asympt = An(n + k)!→ T2 ≡
1

αk
AN+1PV

∫ ∞
0

dt e−t/α
tN+1+k

1− At
(19)

If N is such that we have truncated at the minimal order the terminant has a power
expansion in α modulated by an exponentially suppressed term
For the static potential in the large β0 approximation the leading terminant will be

e
−2π
β0α

(
#0 + #1α + #2α

2 + . . .

)
(20)

The subleading terminant will be

e
−6π
β0α

(
#′0 + #′1α + #′2α

2 + . . .

)
(21)

An expansion where we add exponentially suppressed terms to a superasymptotically
truncated series is called a hyperasymptotic expansion
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Method 1

In QCD in general for a dimensionless observable we will have

B[OX
d ](t(u)) = ZX

Od

µd

Qd

1

(1− 2u
d )1+db

{
1 +

db

n + db
b1 +

db(db − 1)

(n + db)(n + db − 1)
w2 + . . .

}
(22)

Then the leading singularity of the coefficients will be

an;asympt = ZX
Od

µd

Qd

Γ(1 + db + n)

Γ(1 + db)

{
1 +

db

n + db
b1 +

db(db − 1)

(n + db)(n + db − 1)
w2 + . . .

}(
β0

2πd

)n

(23)

Defining

∆Ω(db) ≡ ZX
Od

µd

Qd

1

Γ(1 + db)

(
β0

2πd

)N+1

αN+2
X (µ)PV

∫ ∞
0

dx e−x
xdb+N+1

1− x β0αX (µ)
2πd

(24)

the terminant Ω is
Ω = ∆Ω(db) + b1∆Ω(db − 1) + w2∆Ω(db − 2) + . . . (25)

We truncate the series at αN+1
X (µ) around the optimal order

N =
d2π

β0αX (µ)
(1− cαX (µ)) (26)

which allows us to write the αX ∼ 0 expansion for the terminant

Ω =
√
αX (µ)K

(P)
X

µd

Qd
e
− d2π

β0αX (µ)

(
β0αX (µ)

4π

)−db (
1 + K̄

(P)
X ,1αX (µ) + K̄

(P)
X ,2α

2
X (µ) +O(α3

X (µ))

)
(27)

where

K
(P)
X =

−ZX
Od

Γ(1 + bd)

(
2πd

β0

)bd+1(β0
4π

)bd (β0
d

)1/2 [
− ηc +

1

3

]
ηc ≡ −bd +

2πd

β0
c − 1 (28)

K̄
(P)
X ,1 =

β0/(πd)

−ηc + 1
3

[
− b1 (bd)

(
1

2
ηc +

1

3

)
− 1

12
η3c +

1

24
ηc −

1

1080

]
(29)

K̄
(P)
X ,2 =

β20/(πd)2

−ηc + 1
3

[
−w2(bd−1)bd

(
1

4
ηc +

5

12

)
+b1bd

(
− 1

24
η3c −

1

8
η2c −

5

48
ηc −

23

1080

)
− 1

160
η5c−

1

96
η4c+

1

144
η3c+

1

96
η2c−

1

640
ηc−

25

24192

]
(30)
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Method 1

Thus the principal value Borel sum of the observable can be written

SPV (Q) = SP(Q;µ)+
√
αX (µ)K

(P)
X

µd

Qd
e
− d2π

β0αX (µ)

(
β0αX (µ)

4π

)−db
×
(

1+K̄
(P)
X ,1αX (µ)+K̄

(P)
X ,2α

2
X (µ)+O(α3

X (µ))

)
+ . . .

(31)
In the large β0 approximation things simplify. For the static potential we would have

Ω = ZX
V µr

4π

β0
2N+1PV

∫ ∞
0

du e
−4πu

β0αX (µ)
uN+1

1− 2u
ZV = −2

CF

π
e−

cX
2 (32)

where cX parametrizes the renormalization scheme in the large β0 approximation. Thus the hyperasymptotic
expansion for the PV Borel sum can be written like this

VPV = VP +
1

r
Ω +

3N∑
n=N+1

(vn − vn;asymp)αn+1
X (µ) +

1

r
Ω′ + . . . (33)

Ω ∼ rΛQCD Ω′ ∼ r3Λ3
QCD (34)

We will test this method for the static potential in the larget β0 approximation where we have a lot of analytic control

B[V ](t(u)) =
−CF

π1/2r
e−cXu

(
µ2r2

4

)u
Γ(1/2− u)

Γ(1 + u)
u =

β0
4π

t (35)

and we can compute the PV Borel sum exactly

VPV = PV

∫ ∞
0

dt e−t/αX (µ)B[V ](t) (36)
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The static potential in the large β0 approximation

I consider the static potential in the large β0 approximation in
the MS scheme and the lattice scheme

I fix µ = 1/r and I consider two truncation points, the N that
makes c smallest and still positive, and one order further
which will make c the smallest posible in absolute value and
negative

N =
2π

β0αX (1/r)
(1− cαX (1/r)) (37)

We will see that the more terms we include in the
hyperasymptotic expansion either of these two truncation
points will converge to the same result
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MS Nf = 3
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V
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MS Nf = 3 Zoom
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Lattice Nf = 3
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Lattice Nf = 3 Zoom

(b) (c)
(d)

0.0 0.2 0.4 0.6 0.8 1.0
-0.02

-0.01

0.00

0.01

0.02
0.0 0.2 0.4 0.6 0.8 1.0

-0.02

-0.01

0.00

0.01

0.02

r in GeV
-1

VPV (black line)
(a) VPV − VP (cyan)
(b) VPV − VP − 1

r ΩV (orange)

(c) VPV − VP − 1
r ΩV −

∑3N
n=N+1(vn − v

(as)
n )αn+1 (green)

(d) VPV − VP − 1
r ΩV −

∑3N
n=N+1(vn − v

(as)
n )αn+1 − 1

r Ω′V (blue)

Xabier Lobregat IFAE-BIST

Superasymptotic and hyperasymptotic approximation to the OPE



Introduction Method 1 Conclusions

Comparing MS and lattice

For Nf = 3 and r = 0.1GeV−1
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Order of magnitude in the hyperasymptotic expansion

For MS with Nf = 3

r
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)

vs rΛQCD (blue)

r
(
VPV −

∑N
n=0 vnα

n+1 − 1
r ΩV

)
vs (rΛQCD)1+log 3

(orange)

r
(
VPV −

∑N
n=0 vnα

n+1 − 1
r ΩV −

∑3N
n=N+1(vn − v

(as)
n )αn+1

)
vs

r3Λ3
QCD (green)

Xabier Lobregat IFAE-BIST

Superasymptotic and hyperasymptotic approximation to the OPE



Introduction Method 1 Conclusions

Conclusions

We have seen a method to hyperasymptotically approximate
the PV Borel sum of an observable

We only need knowledge of the exact coefficients until the
perturbative series starts to diverge, and the structure of the
singularities in the Borel plane

We have checked that the methods work for the static
potential in the large β0 approximation

We mean to apply the same method to real QCD observables
and to use them to obtain condensates from the OPE

Xabier Lobregat IFAE-BIST

Superasymptotic and hyperasymptotic approximation to the OPE


	Introduction
	Method 1
	Conclusions

