

Module issues related to SP: CMS

Malte Backhaus, CMS phase 2 IT module WG

Outline

- CMS pixel detector parts
 → and consequences for module SP
 → Module HDI design
- Simulations of HDI
- Barrel HDI prototype
 - Results
 - Further plans
- Barrel thermal simulations
- Summary

TBPX – central barrel \rightarrow 1x2 and 2x2 chip modulesTFPX – forward discs \rightarrow 1x2 and 2x2 chip modulesTEPX – very forward discs \rightarrow only 2x2 chip modules

1,34 mm

Module dimensions

1x2 module 2x2 module 44,35 mm 21,70 mm 18,66 mm 17,70 mm 19,04 mm 37,43 mm 34,75 mm 0,10 mm 0,15 mm 21,70 mm -43.55 mm 44.35 mm 1,34 mm 0,15 mm

43,55 mm

Installation and overall geometry

- Installation from both detector sides
 → merging region in center of detector
- TBPX and TFPX services integrated on TFPX tube (baseline)
 → One structure for installation
- TEPX independent of TBPX/TFPX
- Module constraints from geometry:
 - Ladders in TBPX vs. dees in TFPX and TEPX
 - Both faces of TBPX ladders loaded with modules
 → no possibilities for service routing on back-side / access to module
 - → Supply current needs to be routed directly from module to module \rightarrow In on one side, out on the other side
 - → Current needs to return also from module to module on the module → In on one side, out on the other side
 - TFPX and TEPX: current entries and exits module at the same side

Module design in TFPX and TEPX

TFPX

- Current routing from module to module under study
 - Aluminium pigtail soldering under investigation
 - Working on definition of a base-line idea

TEPX

- Investigating large flex-print (or PCB) for supply current routing, HV distribution, and signal routing
- All connections to services via "pigtail" on module HDI which plugs into a connector on the large flex-print
- → HDI prototype to be designed soon (PSI/UZH)

Malte Backhaus | 15/10/2018 | 6

Module design in TBPX

- Both faces loaded with modules
 → no possibilities for service routing on back-side / access to module
- Need to route supply current and return rurent on ladder front-side from module to module
 - \rightarrow challenging connection
 - \rightarrow high current density
 - → need one "power-in" and one "power-out" connection on each side of the module
 - → signal cable connection independent from power connection
- Keep quick replace/repair option
 - → Replacement without damage to structure or neighbouring modules
 - → Avoid permanent glueing of modules to support if possible

Connection to chains in barrel

Connection to chains in barrel

HDI Requirements

- Clearance driven by wire-bond pad frame
 - Single row, no fanout, >50um wide pads
 - ROC: 100um pitch
 - → Chose 60um wide pads with 40um clearance
 → 10um copper thickness and ENIG/ENEPIG gold-plating possible with larger clearance
- High voltage design
 - More challenging due to distribution from module to module
 → Lines with large clearances etc.
- Supply current distribution
 - Up to 8A in I_{in} and also I_{ret} on final modules, ~1/2 on RD53 modules (on ~1/2 area)
 - Low as possible resistance difference between chips in parallel
 - Need a plane on stable potential for shielding + return current routing on the module (TBPX)
 - → Use Bottom Layer as "local module GND" plane
 - \rightarrow Use Top Layer as I_{in} plane
 - → Use middle plane for return current routing
- Radiation tolerance
 - Activation
 - Glue delamination
 - \rightarrow To be validated

TBPX HDI layer stack

- Two major challenges:
 - Impedance and DC-resistance of eLink routing
 - Power dissipation in supply current and return current routing (of serial powering chain)
- Use a solid copper plane for return current routing
 - ightarrow "closest possibility to a GND plane"
 - \rightarrow improved power dissipation of return current
 - \rightarrow crossing of signal lines (down-link) on bottom plane, still solid copper plane shielding the eLinks
- Input current to chips on top layer plane
- Output current (input to next module) on bottom plane

RD53A TBPX HDI design

HDI design

TBPX 2x2 RD52A HDI

- Received 100 HDI prototypes
- Did optical inspection, good first impression
- Started syst. measurements

Test of HDI before module construction

Tests to be done immediately:

- High voltage done
- Supply current now
- Wire bond stregths this week
- SMD component loading done
- Accelerated ageing / stress test
- Design validation with Chips
 → digital modules

After:

- Wire bond encapsulation
- Flex irradiation \rightarrow delamination
- SMD component irradiation
- Spark protectionn

Wire bond test PCB

HDI wire bond test

HDI high voltage test

HDI with adapter PCB

High voltage test: IV curves on bare HDI

No problem observed up tp 1kV

High voltage test: switch on/off on bare HDIs

No problem observed up tp 1kV

High voltage test after thermal stress

- No problem observed up tp 1kV
- Outlier sample revovered after thermal stress
 → probably due to humidity baked-out of circuitry

Current distribution and power consumption

- Shorted "chip in" and chip"out" pads on one HDI sample
- Shorted also power-out connector
- Measure temperature with increasing current pushed through HDI
- ΔV_{in-out} = 100 mV
 → power consumption on HDI smaller than ~600 mW
 → see simulations on next slides

ITAINNOVA HDI simulations

- Software used: Ansys HFSS & SiWave
- Simulation model configuration and results still ongoing
 - High frequency lines impedances (common and differential)
 - Transient response, eye diagram, etc.
 - Traces and planes parasitic elements calculation (R, L, C)
 - Preliminary impedance results seems very similar to theoretical values:

ITAINNOVA HDI simulations

- HDI Current distribution analysis:
 - Hot spots, unbalancings, etc.
- HDI layers power dissipation
- PRELIMINARY RESULTS FOR I_{in} = 5A
- CHIP current sharing depending on SLDO slope configuration I_{in} = 5A

CMS Phase 2 INFN Perugia – UNIPG Department of Engineering

Introduction to TBPX thermal simulation

- Thermal simulations are performed on TBPX with thermal runaway effect of pixel sensor.
- Special focus on influence of serial powering
- TBPX Layer 1 is most critical and has been deeply studied to check the requirements.
 The thermal analysis of layer 1 module has been performed with the last geometry and it is complete of:
 - Power generation of HDI (uniformly distributed)
 - Power generation of ROCs with nominal case
 - Power generation of ROCs with chip failure cases
 - Thermal Runaway of pixel sensor
- Further sensitivity analysis on the interfaces have been performed on Layer 1 to explore possible solutions to improve the margin from the thermal runaway of the module.
- Layer 2, 3, and 4 do not show particular issues. Concentrate on TBPX Layer one here

11/09/2018

F. Bianchi

E *H zürich*

11/09/2018

CMS Phase 2 INFN Perugia – UNIPG Department of Engineering

Geometric models - Layer 1

CMS Phase 2 INFN Perugia – UNIPG Department of Engineering

Layer 1 results – Nominal case Total luminosity

Conditions inside cooling pipe (CO₂):

Heat transfer coefficient – 7,000 W/m²K

 T_{co2} – variable to explore the thermal runaway

E *H* zürich

CMS Phase 2 **INFN Perugia – UNIPG Department of Engineering**

Layer 1 results – Chip failure cases **Total luminosity**

HDI 0.570 Watt uniformly distributed

 $P(T)_{sensor} \propto P_0 \frac{T^2}{T_0^2} exp \left[-\frac{\Delta E}{2k_b} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right]$ $P_0 =$

Pixel sensor – Thermal runaway

Conditions inside cooling pipe (CO₂):

Heat transfer coefficient – 7,000 W/m²K

 T_{co2} – variable to explore the thermal runaway

CMS Phase 2 INFN Perugia – UNIPG Department of Engineering

Layer 2, 3/4 results – Geometrical model

CMS Phase 2 INFN Perugia – UNIPG Department of Engineering

Layer 2, 3/4 results – Nominal case Total luminosity

First simulations performed on old geometry. No power generation of HDI. Anyway the margin between design temperature and thermal runaway is very wide.

Summary

- Different geometrical constraints in disc and ladder structures
 → dedicated module connectivity for TBPX, TEPX, and TFPX
- Started HDI and module prototyping with focus on TBPX
 - Prototype for 2x2 RD53A modules in hand and under test
 → First results very promising, operation with chips planned for this week
 - HDI layout simulated, comparison with measurements started
- Performing thermal simulations including SP related issues, esp.
 - HDI power consumption
 - Variety of chip failure modes (increase of module power consumption)
 - → TBPX L2-4 with good margin to thermal runaway, also in failure modes.
 Simulations with more details planned
 → Hot spots on HDI etc.
 - \rightarrow TBPX Layer 1 (most demanding) ok in normal operation and in most failure modes
 - → In worst case failure scenario on TBPX Layer 1 further improvements are needed → Sensitivity analyzis for optimization of interfaces started, improvements are possible.

