CMS Inner Tracker Power Systems

Simone Paoletti - INFN Firenze for the Power System Working Group

15 OCT 2018

IT power overview

- LV power is distributed to IT modules according to a serial powering scheme, forming 576 chains of up to 11 modules
- → HV bias is distributed in parallel to modules in each serial chain
- Optoelectronic services (IpGBT and Versatile Link+) are detached from the modules and hosted on dedicated boards ("portcards") positioned around the IT support tube and powered making use of on-board DC/DC converters, following a parallel powering scheme similar to the one used for OT modules.

Two kinds of serial chains are formed:

- ➡ chains of modules with four readout chips ("8A" chains)
- ➡ chains of modules with two readout chips ("4A" chains)

LV power is distributed in parallel to r/o chips (analog and digital parts) within each module.

2.6

2.8

S

يت. م

ii Î

dominik.k

Serial Power current sources

• Two serial power sources were experimented in small laboratory setups:

CAEN (NEOLITE regional project)

- both current and voltage regulation
- 10.5V/2.3 A max
- "sibling" board survived > 50Gy at CHARM

ITAINNOVA current source prototype:

- 16V/16A rating (for a total of up to 8 modules)
- very configurable for serial powering tests:
 - start-up profile
 - switching freq.
 - dynamic responce, protections
- Can be used to study the dynamic behaviour at serial powering start-up

One cable \rightarrow 2 power chains

Cable 1: $\emptyset = 15.3 \text{ mm}$ ^{Rev.} Cable 2: $\emptyset = 13.4^{1/2} \text{mm}_{\text{Rev. 0}}$

- Prototype cables available:
 - 4 L∀ conductors
 - 22 HV wires
 - 8 env. wires (T,H)

CONSTRUCTION DETAILS

Power to r/o chips

Assuming power needed per chip is: **1.9A x 1.5V** (analog + digital)

	n. chains	n. cables	Max power/ chain
8A	312	156	180 W
4A	264	132	80 W
	576	288	

576 chains 292 Power Supply modules ~ 350 W per Power Supply module

n. r/o chips	13192	
power to r/o chips	37 kW	
power dissipated on cables and interconnections	18 kW (Assuming ~85m long cables)	
Total power	55 kW	

projection: size of power system (IT)

	power supply AC/DC		380 power	
	power [kW]	power [kW]	[kW]	
Serial Power	55.00	68.75	80.88	
HV power	2.50	3.13	3.68	
Optoelectronics	2.30	2.88	3.38	
pre-heaters	3.70	4.63	5.44	
TOTAL	63.50	79.38	93.38	

First exercise (~ guess)

Assuming boards powering 1 cable \rightarrow 2 complex channels (LV+HV) per board Assuming 56U high racks with 5 crates + 3 AC/DC

	n.	n.	LV	48V	n crates	n
	chains	boards	power/	power/		Racks
			board	crate		
8A	312	156	360 W	2 kW	33	
4 A	264	136	160 W	2 kW	14	
	576	292			47	10

In addition: LpGBT-based opto conversion system and pre-heaters for IT.

Back end power based on OT power system. Total power budget \sim 6 kW (4 crates).

path to draft specifications document

- Granularity and amount of power per board ~ identified
- next steps:
 - turn ON and OFF procedures
 - LV ramp speed
 - ✓ not too fast
 - ✓ not too slow
 - Protection features requires (OVV, OVC etc.)
 ✓ anything special for serial powering ?
 - Behaviour during transients
 - Extra needs in case of failure scenarios
 ✓ all simulations and tests so far ok
 - HV/LV interplay
 - → need to increase experience with real module chains

HV/LV interplay

Necessity to forbid HV ON when LV is OFF

- is there consensus on this ?
- want to have this safety implemented at hardware level
- implications of that to be understood

Looking at a HV+LV integrated system

HV distribution and grounding options

Several options \rightarrow to be tested on real module chains

- Only one HV RTN line needed (i_HV through r/o chips)
- One "ground point" at detector side → floating power supply
- HV wiring choices:
- A) less material budget
- B) can disconnect single modules via jumpers at power supply end
- C) can regulate individual modules (could be useful for 3D sensors)

HV/LV interplay (2)

Power Supply Market Survey

Market Survey is being prepared for Outer Trackers (CMS, ATLAS)

Can we consider inserting some very inclusive specs for Inner Trackers as well ?

Should agree on some (very inclusive) broad brush specs ... ?
LV:
 -output current per channel: regulated between 0 and XX A
 -output voltage range: up to XX V
 -number of channels/board: up to XX.
 - etc.

HV:

-multi (xx) channels OV to -XXXX V