

ATLAS PIXEL UPGRADE POWER SUPPLIES

Matthias Hamer, Susanne Kersten, Niklaus Lehmann, Steven Welch

GENERAL REQUIREMENTS

- we have to recycle our Type-III cables
 - Power Supplies have to go to service cavern
 - OPC-UA based control software
 - control of power supplies integrated in DCS
 - monitoring of individual channels
- prefer to have commercial solution:
 - high number of channels required
 - including maintenance and upgrade of PSU

LOW VOLTAGE POWER SUPPLIES

- current source overview:
 - general:
 - individually floating channels with individual interlock signals
 - high ohmic when switched off
 - 0.4A 10A
 - low power mode: < 2A
 - max serial current: 7A
 - ramp up: between 100 A/s and 1000 A/s (TBC)
 - measurement on high and low side
 - 5V 50V
 - shortest SP chain: 3 5 modules
 - longest SP chain: 14 modules
 - losses on cables: < 4 to 6V round trip
 - allowable overvoltage: 400mV for load changes in 5-30 us

CURRENT PROTOTYPING

- prototype for ATLAS outer barrel operated with Wiener PL512 Voltage source
 - 7 FE-I4 quad-chip modules powered in series: PL512 operated at current limit
 - 2A, up to 17 V observed

testing ongoing

- voltage source not fast enough to react to load transients (bypass activation causes chain reaction)
- development of current source add-on box in cooperation with Wiener, performance not sufficient
- next iteration of prototype being developed

OTHER CURRENT SOURCES

- tested several different voltage and current sources in Wuppertal 2 years ago
 - serial chain with SLDO prototype chips up to 8x4 regulators
 - custom current source from RAL performed best but still not sufficiently fast

Te	\mathbf{k}_{-}	r	lu.	B	Ready	1	M	Pos:	18.80	JUS 👘	TRIGGER
				Ť							Typ Flanke
		<u>\</u>									Quelle CH1
		1									Flanke: Negativ
? +											Modus Normal
49 24											Kopplung DC
СН	1 50	0mV	CH2	1.001	· · · · ·	vi 10.0	JUS			CH1 🔨	480mV
СН	3 1.0		CH4	500m	W 1	3-De	z—16 1	14:26		<10Hz	

CURRENT SOURCE DEVELOPMENT IN OKLAHOMA

- development of current source for serial powering at Oklahoma University
 - working prototype finished earlier this year
 - currently being tested with FE-I4 modules
 - development of second prototype ongoing which will be distributed to several institutes

HIGH VOLTAGE POWER SUPPLIES

- requirements
 - up to 450V, 10mA (3D), 800V, 20mA (planar)
 - individually floating channels
 - ripple 5-10 mV pp
 - ideally 2 or 4 quadrant measurements: current measurement of ~nA to mA
 - individually floating channels
 - individual interlock signals for every channel
 - fast ramp-down in case of interlock
 - possibly low-ohmic off-mode (crowbar)
 - discharge resistors?

TESTING WITH CURRENT MODULES

- testing prototype with Iseg HV power supply used in current pixels

Tek	n	Acq Complete M Pos: 3.00	Ons TRIGGER
1+		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Typ Flanke
			CH1
		overshoot and dip of the to fine adjustment (lue (TBC) Positiv
			Modus Normal
			Kopplung
CH1 2	0.0V	M 5.00s 5–Jun–18 16:15	CH1 / -10.4V <10Hz

→ at 90V, it takes about 5s to reach stable 0V
→ might require faster ramp-down, but to be tested

OBSERVED INTERLOCK BEHAVIOUR

- testing prototype with Iseg HV power supply used in current pixels

- apparently random spikes even when channels are switched OFF
- fixed by firmware

- ATLAS will require about 1000 LV channels, and about 2100 HV channels
- we expect LV and HV modules with about 8 channels each
 - prototyping with Wiener for LV current sources
 - started discussing HV power supplies with Iseg
 - looking into various other options
- currently gathering information to write up specifications
 - market survey with rough specs imminent
 - refined specifications and requirements needed early next year
- ATLAS will require additional PSU for DCS and on-detector R/O components