Measurement of D^{0} nuclear modification factor and elliptic flow in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{S N N}=5.02 \mathrm{TeV}$ with ALICE

INIVRITI
di Padova
Istitutu Nazionale di Fisica Nucleare

Heavy flavours in the Quark-Gluon Plasma

O Heavy flavours (i.e. c and b quarks) are mainly produced in hard-scattering process on short time scale in the early stage of the collision
O They probe the full evolution of the QGP created in ultrarelativistic heavy ion collisions, interacting with its constituen

- D^{0} reconstruction

- Reconstruction of decay vertices displaced ~ 100 microns from primary vertex combining pairs of tracks with proper charge sign
- Particle identification (PID) of decay tracks and geometrical selection of displaced decay-vertex topology
O Efficiency correction with Monte Carlo simulations using HIJING [1] events enriched with PYTHIA [2] cc̄ and b \bar{b} pairs
- Beauty feed-down subtraction based on FONLL [3] calculations

Stefano Trogolo on behalf of the ALICE Collaboration Università degli Studi di Padova - INFN Padova
$18^{\text {th }}$ SQM International Conference - Bari 10-15 June 2019

- Nuclear modification factor

$R_{\mathrm{AA}}=\frac{1}{\left\langle T_{\mathrm{AA}}\right\rangle} \frac{\mathrm{d} N_{\mathrm{AA}} / \mathrm{d} p_{\mathrm{T}}}{\mathrm{d} \sigma_{\mathrm{Pp}} / \mathrm{d} p_{\mathrm{T}}}$
$<T_{\mathrm{AA}}>$ is the average nuclear overlap function, proportional to the number of binary nucleon-nucleon collisions
$\mathrm{d} \sigma_{\mathrm{pp}} / \mathrm{d} p_{\mathrm{T}}$ is the D^{0} cross-section measured in pp collisions at $\sqrt{ } \mathrm{s}=5 \mathrm{TeV}$

O It provides information about the of energy loss in the QGP which can occur via

- inelastic process (gluon radiation) [4]
elastic scatterings (collisional process) [5]

Prompt $\mathrm{D}^{0} R_{\text {AA }}$ in $\mathrm{Pb}-\mathrm{Pb}$ collisions in three different centrality classes

○ $R_{\mathrm{AA}}(60-80 \%)>R_{\mathrm{AA}}(30-50 \%)>R_{\mathrm{AA}}(0-10 \%)$ \rightarrow suppression factor up to a factor 5 observed in the 10% most central $\mathrm{Pb}-\mathrm{Pb}$ collisions for $p_{\mathrm{T}}>5 \mathrm{GeV} / \mathrm{c}$

O The suppression increases from peripheral (60-80\%) [6] to central ($0-10 \%$) $\mathrm{Pb}-\mathrm{Pb}$ collisions

- Similar behavior observed for other non-strange D mesons

Comparison with theoretical models

O Heavy-quark transport in medium with realistic evolution can fairly describe the data for $p_{\mathrm{T}}<10 \mathrm{GeV} / \mathrm{c}$ [7-12]
\rightarrow interplay of collisional energy loss, radial flow hadronisation via recombination

O Models based on pQCD [13-15] provide a good description of the data for $p_{T}>10 \mathrm{GeV} / \mathrm{C} \rightarrow$ radiative energy loss dominant effect
O Heavy-quark spatial-diffusion coefficient in the range of $2 \pi T D_{s}(T) \approx 1.5-7$ at $T \approx 155 \mathrm{MeV}$ [16] for models describing the v_{2}

0 Hint of $v_{2}(\mathrm{~J} / \Psi)<v_{2}(\mathrm{D})<v_{2}\left(\boldsymbol{\pi}^{ \pm}\right)$for $p_{\mathrm{T}}<4 \mathrm{GeV} / \mathrm{c}$ \rightarrow how light quarks contribute to open charm flow?

ALICE detectors

O Data sample used for the analysis
$\rightarrow \mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{ } s_{\mathrm{NN}}=5.02 \mathrm{TeV}$ collected in 2018
$\rightarrow \mathscr{L}_{\text {int }} \approx 114 \mu \mathrm{bb}^{-1}$ (0-10\%) and $\mathscr{L}_{\text {int }} \approx 49 \mu \mathrm{~b}^{-1}$ (30-50\%)
O Main detectors used for D-mesons analyses

Inner Tracking System

Track reconstruction
Reconstruction of primary and secondary (decay) vertices

VO detectors

Trigger
Centrality
Event Plane determination (estimator of Reaction Plane)

Azimuthal anisotropy

O The azimuthal distribution of particle momenta can be written in terms of Fourier expansion
$\rightarrow v_{2}=\left\langle\cos \left[2\left(\varphi-\Psi_{2}\right)\right]\right\rangle$ second-order coefficient

Scalar product method adopted
based on the measurements of the Q-vectors • v_{2} is evaluated for in bins of invariant mass
$Q_{2, x}=\sum_{i=1}^{N} w_{i} \cos \left(2 \varphi_{i}\right) \quad Q_{2, y}=\sum_{i=1}^{N} w_{i} \sin \left(2 \varphi_{i}\right)$
v_{2} of the signal via a simultaneous fit of $v_{2}(M)$ and M
$v_{2}(M)=\frac{1}{R_{2}}\left\langle u_{D} \cdot Q_{2}^{\mathrm{A}} / M^{\mathrm{A}}\right\rangle(M)$
$v_{2}(M)=v_{2}^{S} \frac{S(M)}{S(M)+B(M)}+v_{2}^{B} \frac{B(M)}{S(M)+B(M)}$

Event-shape engineering

O Event-shape engineering (ESE) technique [17] based on the observation of event-by-event v_{n} at fixed centrality \rightarrow linear correlation between final state v_{n} and initial state eccentricity ε_{n}

O Applied to the D meson, provides information about the coupling of the c quark and the bulk of light quarks in the underlying medium \rightarrow measurement performed as for the unbiased v_{2}

Events in the same centrality class are classified according to the magnitude of the $2^{\text {nd }}$ harmonic reduced flow vector [18]
$q_{2}=\left|\vec{Q}_{2}\right| / \sqrt{M}$

O Larger $\mathrm{D}^{0} v_{2}$ measured in events with large average elliptic flow (large- $q_{2}{ }^{\text {TPC }}$) and smaller for events with small average elliptic flow (small- $\left.q_{2}{ }^{\mathrm{TPC}}\right)$ \rightarrow similar result also for D^{+}and D^{++}
O Non-flow contaminations could slightly enlarge the effect $\rightarrow q_{2}$ and D-meson v_{2} measured in the same η range
O Ratio of p_{T}-differential yields in ESE and unbiased samples \rightarrow investigate a possible interplay between azimuthal anisotropy and the radial flow and energy loss

Hint of hierarchy for $p_{T}<8 \mathrm{GeV} / c$ between small- $q_{2}{ }^{\text {TP }}$
$p_{\mathrm{T}}(\mathrm{GeV} / c)$

