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ABSTRACT
The behaviour of strange matter in the frame of the SU(3)
Polyakov-loop extended Nambu-Jona-Lasinio model is
considered. We discuss the appearance of a peak in the
ratio of the number of strange mesons to non-strange
mesons known as the ”horn”. We showed that the rise in
the ratio K+/π+ appears in PNJL model when we build
the K+/π+ ratio along the phase transition diagram. We
considered how the matter properties can affect to the
behaviour of the kaon-to-pion ratio.

THE ’HORN’: THEORY OVERVIEW
• the statistical model: hadron resonances + σ - meson (the hadron phase transition)
⇒ the qualitative reproduction of the peak (A. Andronic, PLB 673, 142 (2009)).

• the SMES: a jump in the ratio is a result of the deconfinement transition: when deconfinement transition occurs the
strangeness yield becomes independent of energy in the QGP (ms → ms0) (M. Gazdzicki, M.I. Gorenstein, Acta Phys.
Pol. B 30, 2705 (1999)).

• the microscopic transport model + the partial restoration of chiral symmetry (A. Palmese, et al. PRC
94, 044912 (2016): the quick increase in the K+/π+ appears as a result of the partial chiral symmetry restoration; the
decrease is a result of QGP formation.

THE PNJL MODEL
We consider the Polyakov loop extended SU(3) Nambu-Jona-Lasinio model with scalar-pseudoscalar interaction and
the t’Hooft interaction which breaks the UA(1) symmetry [1]:
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The grand potential density for the PNJL model in the mean-field approximation can be obtained from the Lagrangian density:
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where E±i = Ei ∓ µi, β = 1/T , Ei =

√
pi

2 + m2
i is the energy of quarks and 〈q̄iqi〉 is the quark condensate.

The gap equations:
mi = m0i + 4G < q̄iqi > +2K < q̄jqj >< q̄kqk >

The meson masses are defined by the Bethe-Salpeter equation at P = 0:
1− PijΠP

ij(P0 = M,P = 0) = 0 ,

with Pπ = Gs + K 〈q̄sqs〉 , PK = Gs + K 〈q̄uqu〉 and the polarization operator: ΠP
ij(P0) = 4

(
(I i1 + Ij1)− [P 2

0 − (mi −mj)
2] I ij2 (P0)

)
.

The set of parameters: m0u = m0d = 5.5 MeV, m0s = 0.131 GeV, Λ = 0.652 GeV, couplings gD = 89.9 GeV−2 and gS = 4.3 GeV−5.
After the Mott temperature T > TMott the meson mass becomes more than (P0 > mi + mj) and the meson from the bound state turns into the resonance state and can dissociate into its
constituents, the solution has to be defined in the form P0 = MM − 1

2iΓM , T πMott = 0.232, TKMott = 0.23 Gev.

”HORN” in K/π RATIO
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with parameter µπ = 0.135 [2] and µK = µu−µs (see for
example [3]

THE MODEL IMPROVEMENTS

•Case I: introduce a phenomenological dependence of Gs(Φ) [4] G̃s(Φ) = Gs[1− α1ΦΦ̄− α2(Φ
3 + Φ̄3)]

with α1 = α2 = 0.2.

•Case II: Case I + the effect of axial symmetry and dependence of the coupling K = K0 exp(−(ρ/ρ0)
2) on the dense

states [5]

CONCLUSION AND OUTLOOKS:

• splitting of kaons masses at high densities ⇒ the difference in the behavior of the K/π at low energies.

• the hight of the peak in the model depends on the properties of the matter (strange chemical potential, T
and µB) - it looks like we need more realistic description of the media. F.e. strangeness neutrality in PNJL
model can be introduced by additional condition ns = ∂Ω

∂µB
.

• the position of the peak pretends to be depend on curvature of phase diagram/CEP position.

• it is interestig to consider baryon-to-pion ratio in the PNJL model
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Masses at µB = 0 and finite T
Masses at T = 0 and finite µB.

The phase diagram

We can:

• explain and describe spontaneous chiral symmetry bro-

ken as mq = m0+ < q̄q >;

• simulate the confinement/deconfinement transition

• build the phase diagram with crossover at low chemi-

cal potential and 1st order transition at high chemical

potential (m0 6= 0),

As in an effective model the energy of

collision
√
sNN does not appear in the

natural way, we introduced a new vari-

able T/µB, where both T and µB were

chosen along the phase transition line.
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