
QCD Thermodynamic Geometry

D. Lanteri1,2
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ABSTRACT
QCD phase transition is studied within the thermodynamic geometry. Through the definition of a metric in the thermodynamic space, one builds a scalar thermodynamic geometry curvature, R, in the usual way and investigates the nature of the
interactions. R, indeed, reflects some important features of the system: e.g. the so-called interaction hypothesis, |R| ∼ ξd, where ξ is the correlation length and d the effective spatial dimension of the underling thermodynamic system. Moreover,
the sign of R seems to provide information on the system interactions (attractive or repulsive, fermionic or bosonic). We have studied R in different model: Nambu-Jona-Lasinio model with two and three flavors, Hadron Resonance Gas models
and Lattice-QCD. In all of these models, R shows a characteristic behavior, different for each transition type (if present): I or II order or crossover.

THERMODYNAMIC GEOMETRY

THERMODYNAMIC Geometry is considered a
powerful tool to study statistical systems. The

starting point is to equip the thermodynamic
space with a metric. One can do this in different
ways, but the most physically significant one is
perhaps that introduced by Ruppeiner [1] throught
the Hessian of the entropy density:

gµν = − ∂s

∂Xµ∂Xν
, (1)

with Xµ = (ε, n1, · · · ), being ε the internal energy
density and ni the number densities of particles
of different species.

The resulting distance is in inverse relation with
the fluctuation probability between equilibrium
states. For example in classical fluctuation the-
ory one has

P ∝ exp

{
−∆`2

2

}
, (2)

where ∆`2 = gµν∆X
µ ∆Xν is the line element in

the thermodynamic geometry. Moreover, it leads
to the “interaction hypothesis”, i.e the correspon-
dence between the absolute value of the scalar
curvature R (an intensive variable, with units of a
volume, evaluated by the metric) and ξd, where
ξ is the correlation length and d is the effec-
tive spatial dimension of the underling thermody-
namic system. Indeed, a covariant and consistent
thermodynamic fluctuation theory can be devel-
oped, which generalizes the classical fluctuations
theory and offers a theoretical justification to the
physical meaning of R.

Within the thermodynamic geometry approach,
the physical meaning of the sign of R is still under
debate but there are indications that it is directly
related to the microscopic interactions, since R
is positive for repulsive interactions and nega-
tive for attractive ones. A similar behavior has
been found for quantum gases, but with a differ-
ent meaning: R is positive for fermi statistical in-
teractions and it is negative in the bosonic case.
In this sense, therefore, a change in sign of R is
an indication of the balance between effective in-
teractions, even when no transition occurs.

In the analysis of the phase transitions [2–4] we
considered a two dimensional manifold, where
the intensive coordinates are β = 1/T and γ =
−µ/T , with µ chemical potential. Moreover the
metric (1) turns out to be related with the deriva-
tives of the potential φ = p/T , where p is the pres-
sure:

gµν =

(
φ,ββ φ,βγ
φ,βγ φ,γγ

)
, (3)

with the usual comma notation for derivatives.
The scalar curvature R simply becomes

R =
1

2 g2

∣∣∣∣∣∣
φ,ββ φ,βγ φ,γγ
φ,βββ φ,ββγ φ,βγγ
φ,ββγ φ,βγγ φ,γγγ

∣∣∣∣∣∣ . (4)

For low chemical potential, and thus for low γ,
eq. (4) can be expresses as a Taylor expan-
sion [2]:

R(β, γ)=RO(0)(β)+RO(2)(β)γ2+RO(4)(β)γ4 . (5)

The coefficients RO(2n) are functions of the cumu-
lants χ2n and of their derivatives with respect to β.
For example, the zero-order term is

RO(0)(β) =
1

2 P̈0(T )

[
3 + T

χ̇2(T )

χ2(T )

]
×

×
[ ...
P 0(T )

P̈0(T )
− χ̇2(T )

χ2(T )

]
,

(6)

being “ ˙ ” the derivative with respect to T , P0(β)
is the pressure and χ2(T ) = ∂2(P/T 4)/∂γ2, both
at µ = 0.
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NAMBU - JONA LASINIO MODEL

WE study Nambu - Jona Lasinio model
with two or three flavors and in the chiral

limit or with physical masses. It’s well know
that, in the chiral limit, two flavor NJL model
exhibits a II order phase transition. In terms of
thermodynamic geometry this means that R
diverges at the critical point (see black curve
in FIG. 1). Moreover, for small µ and near
the transition the curvature is negative, i.e.
the interaction is mostly attractive, suggest-
ing that the chiral symmetry restoration is due
to thermal fluctuations. By adding a mass
m = mu = md 6= 0, the divergence of the II
order phase transition turns into a minimum
in the negative R region (see red and purple
curves in FIG. 1). The transition temperature
obtained by chiral susceptibility χf is in agree-
ment with the one evaluated by the maximum
of |R| (see FIG. 2 for 3 flavors).
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LATTICE QCD

SCALAR curvature from eq. (5) is plotted in FIG. 3, for different values of µ and of the ratio r = nQ/nB = 0 or 0.4 (where nQ and nB are the charge and baryon number densities
respectively) [2]. Here the transition is driven by the condition R = 0, as shown in FIG. 4, that shows the chiral susceptibility, χ, at µ = 0 MeV and as a function of the scalar

curvature R for physical value of the strange quark mass, ms, and ms/m` = 20 or ms/m` = 27 (both at r = 0) [4].
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FIGURE 6 shows the transition temperature obtained via the R = 0 condition in LATTICE QCD and
HRG models, compared with the freeze-out hadronization curve and the pseudo-critical temperature
by lattice data.

HADRON RESONANCE GAS MODEL
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Lattice r=0

(FIGURE 5)
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WE study [3] Hadron Resonance
Gas (HRG) models with differ-

ent attractive and repulsive correc-
tions and by an expansion at low
chemical potential to O(γ4) (eq. (5)):

• ideal HRG model of point-like con-
stituents;

• Van der Walls HRG model;

• Clausius - Carnahan-Starling -
HRG model, where the repul-
sive excluded volume interaction
is given by the Carnahan-Starling
term fCS = exp

{
−(4−3η)η

(1−η)2

}
(being

η the packing fraction) and the at-
tractive one by the Clausius form
uCl = − an

1+bn (n is the number den-
sity).

The scalar curvature R’s are plotted
in FIG. 5 together with that obtained
from lattice QCD with r = nB/nQ = 0
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COMMENTS AND CONCLUSIONS

WE find that, in NJL model, thermodynamic geometry reliably describes the phase diagram, both in the chiral limit and for finite quark masses. Different R scenarios are
found as the transition is a I or II order or a crossover. Particularly, a non zero quark mass m reduces the value of |R| at the transition from infinity to a finite value and

the transition temperature is well evaluated by the maximum of |R|. However, NJL model misses color confinement and therefore there is no a priori reason to apply the same
geometric criterium for non perturbative QCD dynamics.

In Lattice QCD the transition temperature is identified by a different criterion, i.e. R = 0. It indicates the transition from a mostly fermionic system (as the quark-gluon plasma)
to an essentially bosonic one (as the hadron resonance gas) but, as shown in FIG. 4, it exactly corresponds to the maximum of chiral susceptibility, confirming the well known
interplay between confinement and chiral symmetry breaking. The transition temperature evaluated by R = 0 is in agreement with the freeze-out hadronization curve and with
the pseudo-critical temperature by lattice data within 10%.

The comparison between the geometrical study of NJL model and of (2+1) Quantum Chromodynamics at high temperature and small baryon density shows a clear connection
between chiral symmetry restoration/breaking and deconfinement/confinement regimes. The behavior of the scalar curvature in HRG models also show a clear dependence of
the thermodynamic geometry from volume excluded effect or attractive corrections.
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