

SQM 2019

Two-particle correlations with high- p_T K⁰_S mesons in pp collisions at ALICE

Lucia Anna Husová for the ALICE Collaboration Ihusova@uni-muenster.de, Institut für Kernphysik, Münster

Motivation

- Gluon jets exhibit 40% higher production of Λ baryons, equal production of K_{S}^{0} mesons [1]

Dihadron correlations

- Trigger particle high $p_T \rightarrow$ proxy for hard-

$$\Delta \phi = \phi_{trigg} - \phi_{assoc}$$

$$\Delta \eta = \eta_{trigg} - \eta_{assoc}$$

Corrections

- Detector acceptance uses mixed events, ϵ_{pair} term in Eq. 3
- Single particle tracking efficiency performed with MC, ϵ_{trigg} and ϵ_{assoc} terms in Eq. 3
- Secondary contamination in primary hadrons performed with MC, factor C in Eq. 3
- Misidentified V⁰ done after $\Delta \phi$ projection and background subtraction:
- 1. Correlation function built with candidates from signal interval (blue and orange areas in Fig. 4)
- 2. Correlation function built with candidates from side-bands intervals (green areas in Fig. 4)
- 3. The second correlation function is scaled with a factor proportional to background-signal size

Per-trigger associated yields as a function of p_{T}^{trigg} and multiplicity

Figure 5: h-h correlations, compared with PYTHIA8-Monash.

Figure 6: K_{S}^{0} -h correlations, compared with PYTHIA8-Monash.

(4)

and subtracted from the first one

 $K_{\rm S}^0$ candidates (Blue- signal, orange - background, green- side-band regions).

Figure 7: h-h correlations, near-side (left) and away-side (right), compared with PYTHIA8-Monash.

Figure 9: Ratios of K_{S}^{0} -h per-trigger yield to h-h per-trigger yield as a function of p_{T}^{trigg} for different multiplicity intervals on the near-side.

Figure 11: Ratios of K_S^0 -h per-trigger yield to h-h per-trigger yield as a function of p_{T}^{trigg} for different multiplicity intervals on the away-side.

Comparison of different trigger particles

Figure 10: Ratios of K_{S}^{0} -h per-trigger yield to h-h per-trigger yield as Figure 12: Ratios of K_{S}^{0} -h per-trigger yield to h-h per-trigger yield as a function of $p_{\rm T}^{\rm assoc}$ for different $p_{\rm T}^{\rm trigg}$ intervals on the near-side. a function of $p_{\rm T}^{\rm assoc}$ for different $p_{\rm T}^{\rm trigg}$ intervals on the away-side.

Summary and Outlook -

- The yields are qualitatively well described by PYTHIA8, but not quantitatively
- On the near-side yields from highest multiplicity class are the highest ones, on the away side opposite effect can be observed
- The yields from K_{S}^{0} -h correlations are smaller than the yields from h-h correlations for both near- and away side, for all multiplicity classes and all $p_{\rm T}$ bins
- Coming soon: comparison to $(\Lambda + \overline{\Lambda})$ -h correlations to provide information on quark vs. gluon jets

References

- [1] K. Ackerstaff, et al. Production of K_S^0 and Λ in quark and gluon jets from Z^0 decay. The European Physical Journal C. 1999, 8(2): 241-254. http://www.springerlink.com/index/10.1007/s100529901058
- [2] K. Hamacher, Fragmentation @ LEP, Acta Physica Polonica B, No 2, Vol. 36 (2005), page 433
- [3] ALICE Collaboration, Enhanced production of multi-strange hadrons in high-multiplicity protonproton collisions. Nature Physics [online], 13 (2017) 535. http://www.nature.com/doifinder/10.1038/nphys4111
- [4] A. Rasoanaivo, W.A. Horowitz, Two Gluon Emission from MHV: Two Particle Correlations and the Deviation from Poisson, 2017, arXiv:1712.06292

