



The 18<sup>th</sup> International Conference on **Strangeness in Quark Matter (SQM 2019)** 10-15 June 2019, Bari (Italy)



INFN

# Non-prompt D<sup>0</sup>-meson production in pp collisions at $\sqrt{s} = 5.02$ TeV with ALICE

Mengke Cai, Xinye Peng for the ALICE Collaboration

**Central China Normal University, China** 

**INFN & University of Padova, Italy** 

### Motivation

• Heavy-Flavour (HF) quarks (charm, beauty) are produced in hard partonic scattering processes

• HF production can be calculated with pQCD down to low  $p_{T.}$ 

Shorter formation time than the Quark-Gluon Plasma (QGP) (τ<sub>c/b</sub> ~ 0.01-0.1 fm/c, τ<sub>QGP</sub> ~0.1-1 fm/c) <sup>[1]</sup>

### **ALICE SETUP**

Inner Tracking System (ITS)

- Tracking
- Vertex reconstruction

Time Projection Chamber (TPC) • Tracking • PID with dE/dx

- They experience full system evolution interacting with the medium constituents.
- Non-prompt D<sup>0</sup>-meson production indirect measurement in the beauty sector:
  - A reference for p-Pb and Pb-Pb collisions
  - A test of pQCD calculations

## Challenges

- Similar decay topology to the prompt  $D^0$
- Smaller production cross section (~ 5% 15% of prompt  $D^0$ )

# Signal extraction

Signal selection is based on combined 2-step Boosted Decision Trees (BDT), trained with TMVA<sup>[2]</sup>, aiming to reduce the contribution from prompt D<sup>0</sup> and to reduce the combinatorial background.

D flight line\_

• Variables used for **BDT** training are associated to the reconstructed D<sup>0</sup> decay vertex.



<sup>\</sup>D<sup>0</sup>reconstructed momentum







• Signal extraction high non-prompt fraction 70% ~ 90% for  $1 < p_T < 12$  GeV/c, 40% ~ 60% for  $12 < p_T < 24$  GeV/c.

ALI-PREL-319648

- The non-prompt D<sup>0</sup> cross section was measured in pp collisions at  $\sqrt{s} = 5.02 \text{ TeV}$
- The data points are consistent with FONLL<sup>[4]</sup> predictions within uncertainties near the upper band of the predictions.
- First measurement of non-prompt D<sup>0</sup> production cross section down to the  $p_{\rm T} = 1$  GeV/*c* with high precisions.

#### Reference

[1]. F. Liu, S. Liu. Phys. Rev. C 89, 034906 (2014)
[2]. TMVA. PoS ACAT 040 (2007), arXiv:physics/0703039
[3]. F. Reidt. CERN-THESIS-2016-033
[4]. M. Cacciari, M. Greco, P. Nason. JHEP 9805 (1998) 007



#### Acknowledgement

This work was partly supported by the National Natural Science Foundation of China (Project No. 11805079 and No. 11775097) and by China Postdoctoral Science Foundation and the Grant CCNU18ZDPY04.