Nuclear matter production

- At the high energies reached in proton-proton (pp), proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions at the LHC, a significant production of light (anti-)nuclei, such as (anti-)deuterons, is observed.
- Two different theoretical models are available to describe the production mechanism of light (anti-)nuclei:
 - Statistical-thermal model
 - The yield of the hadronic species dN/dy is fixed at chemical freeze-out and it depends on the freeze-out temperature T_F and on the mass of the hadron: \(\frac{dN}{dy} \propto \exp \left(\frac{-m}{T_F} \right) \)
 - Since the mass of the nucleus is high, small variations in T_F drastically change the yield of nuclei.
 - Coalescence model
 - The baryons that are close in phase-space at the kinetic freeze-out can coalesce to form (anti-)nuclei.
 - The probability of producing a nucleus by coalescence can be expressed through the coalescence parameter B_m: \(B_m = \frac{E_0^2}{E_{lab}^2} \frac{dN}{dy} \)

Mean transverse momentum

- The mean transverse momentum \(\langle p_T \rangle \) has been evaluated from the Levy-Tsallis distribution, a simple coalescence model describes the results obtained in pp collisions better than the Blast Wave model.

Analysis strategy

- 9 multiplicity classes + integrated multiplicity
- Particle Identification
 - Signal extracted from:
 - TOF squared mass distribution
 - TPC number of sigma distribution
- Corrections
 - efficiency x acceptance
 - rejection of secondaries
- Systematic Uncertainties
 - Many sources (track selection, signal extraction, rejection of secondaries, material budget, TPC-TOF matching efficiency)

Results

- Transverse momentum spectra vs multiplicity
 - The transverse momentum (p_T) spectra have been measured for (anti-)deuterons.
 - The p_T spectra are fitted using a Levy-Tsallis distribution:
 \[f(p_T) = p_T^\alpha \frac{dN}{dp_T} \exp \left(\frac{-m}{T_F} \right) \left[1 + \left(\frac{p_T}{m} \right)^2 \right]^{-\frac{\alpha}{2}} \]
 \(\alpha = 1.875 \) free parameters
 - The fit to the production spectra is aimed to:
 - extrapolate the spectra in the unmeasured p_T region
 - evaluate the p_T integrated yield dN/dy and mean transverse momentum \(\langle p_T \rangle \)

References