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We study the production of entropy in the context of a nonequilibrium chiral phase transition. The 
dynamical symmetry breaking is modeled by a Langevin equation for the order parameter coupled to the 
Bjorken dynamics of a quark plasma. We investigate the impact of dissipation and noise on the entropy 
and explore the possibility of reheating for crossover and first-order phase transitions, depending on the 
expansion rate of the fluid. The relative increase in S/N is estimated to range from 10% for a crossover 
to 100% for a first-order phase transition at low beam energies, which could be detected in the pion-to-
proton ratio as a function of beam energy.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Ultrarelativistic heavy-ion collisions experiments at RHIC and 
LHC have provided strong evidence for a quark-gluon plasma (QGP) 
phase at large temperatures and densities. One of the charac-
teristics of this new phase of strongly-interacting matter is the 
restoration of chiral symmetry which is spontaneously broken in 
the ground state of quantum chromodynamics (QCD). Lattice QCD 
studies have revealed a crossover chiral transition for small bary-
ochemical potentials μB [1–4], while evidence for a critical point 
(CP) and first-order phase transition has been obtained from func-
tional methods allowing the exploration of regions with large val-
ues of μB [5,6]. Up to now, there is no lattice QCD study at 
physical quark masses that has found a CP or computed the chi-
ral susceptibility at a CP, although some major steps have been 
undertaken in this direction [7–9]. Recently, considerable progress 
has been made in constructing a QCD equation of state with a CP 
based on lattice QCD data [10].

The experimental search for the QCD phase transition is nowa-
days one of the central goals for current and future collider fa-
cilities. It is mainly driven by measurements of net-proton or 
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net-charge multiplicity fluctuations [11–14] which are expected to 
show characteristic nonmonotonic behavior near the phase tran-
sition and especially near the CP where the correlation length 
diverges [15–23]. A proper understanding of the experimental re-
sults, however, requires careful analysis of the dynamical processes 
that will have an influence especially near a CP where critical 
slowing down severely limits the growth of the correlation length 
and therefore of critical fluctuations [24], and memory effects can 
lead to a broadening of the critical region [25]. Nonequilibrium 
models have tried to address these issues demonstrating criti-
cal slowing down near a CP [26–30] and spinodal decomposition 
resulting in domain formation at a first-order phase transition 
[31–35]. Near a CP, the nonequilibrium dynamics will influence 
the order parameter and, related to that, experimental observables 
such as net-baryon or net-proton multiplicity fluctuations [23,36,
37].

While ideal hydrodynamics preserves the total entropy, the ad-
dition of dissipation and fluctuation in nonequilibrium models will 
lead to an increasing entropy, an effect that is going to be ad-
dressed in this paper both qualitatively and quantitatively, together 
with its potential as an experimental signal for a first-order QCD 
phase transition. One can expect that a delay in the relaxation of 
the critical mode produces additional entropy [38]. In this work, 
we explore the impact of dynamical effects on the production of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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entropy within a model describing the realistic dynamics of the 
chiral transition, the recently studied Nonequilibrium Chiral Fluid 
Dynamics (NχFD) [39,40]. We investigate the evolution of the crit-
ical k = 0 mode of the chiral order parameter field coupled to 
the longitudinal Bjorken-type expansion of a quark–antiquark fluid. 
The Bjorken model essentially describes a longitudinal fluid dy-
namical expansion of the fireball created in a heavy-ion collision 
with the z-component of the fluid velocity given by: vz = z/t [41]. 
It should be noted that this approach does not cover various other 
sources of entropy production such as shear viscosity [42] or com-
pression during the early stage of a heavy-ion collision [43]. Our 
work is aimed at possible experimental signatures which may con-
firm or rule out the existence of a CP in systems created in heavy-
ion collisions. The entropy production in our simulation is mainly 
a result of the dissipation of the strong fluctuations at the phase 
transition and CP. This is a generic feature of a non-equilibrium 
phase transition and should be independent on the exact choice of 
order parameter. The critical mode in QCD is some mixture of the 
chiral and baryonic modes and the quark number susceptibilities 
should diverge at the QCD critical point. This can in principle be 
described within the dynamics of the chiral quark-meson model 
for the description of the chiral field dynamics, used in this letter, 
as shown in [34,35,37,44].

In the present letter we have focussed on the fluctuations of 
the chiral field, since the sigma field is widely accepted to be the 
critical mode of the QCD critical point, characterized by a vanish-
ing sigma mass as shown in [22,36]. This work is of Stephanov 
is one of the fundamental motivations for the beam energy scan 
program at RHIC [14]. Currently, the volume scaling of the chi-
ral susceptibility is still in agreement with a chiral second-order 
phase transition in the chiral limit and the divergence of the chi-
ral susceptibility at the CP has also been demonstrated in the QCD 
inspired NJL model [45].

Results presented in this article are of considerable interest for 
experiments at the future facilities of FAIR [46], NICA [47], and also 
for RHIC’s BES II program.

The present paper is structured as follows: We present the dy-
namical equations of our model in Sec. 2 and apply these in Sec. 3
to study the production of entropy from dissipation and fluctu-
ations. Sec. 4 then presents results on the impact of initial con-
ditions on the entropy increase and reheating for crossover and 
first-order phase transition evolutions. This will be further inves-
tigated in Sec. 5 where these effects are compared for different 
transition scenarios. In the end, we will conclude with a summary 
and outlook in Sec. 6.

2. Chiral Bjorken dynamics

Our ansatz for the chiral phase transition is the linear sigma or 
quark-meson model which has the essential features of a crossover 
for small baryochemical potentials and a CP and first-order phase 
transition at large values of μB. The Lagrangian density of this 
model is

L = q
(
iγ μ∂μ − gσ

)
q + 1

2

(
∂μσ

)2 − U (σ ) , (1)

U (σ ) = λ2

4

(
σ 2 − f 2

π

)2 − fπm2
πσ + U0 . (2)

Here, we have readily set the pion fields equal to their vacuum 
expectation value of zero as we focus on the evolution of the field 
σ as the chiral order parameter. The field q = (u, d) includes the 
light quark fields only. The parameters of this model are chosen 
in the standard fashion with fπ = 93 MeV, mπ = 138 MeV and 
U0 such that the potential U (σ ) vanishes in the ground state. The 
quark-meson coupling g is fixed by the condition that gσ equals 
the nucleon mass of around 940 MeV in vacuum. We set λ2 = 19.7
to fix the mass of the sigma field to 600 MeV.

The equation of motion for the zero mode σ(τ )= 1
V

∫
d3xσ(τ ,x)

reads

σ̈ +
(

D

τ
+ η

)
σ̇ + δ�

δσ
= ξ , (3)

with the dot referring to the derivative with respect to proper 
time τ . The potential � = U + �qq̄ contains the mean-field quark–
antiquark contribution

�qq̄ = −2N f Nc T

∫
d3 p

(2π)3

[
log

(
1 + e− E−μ

T

)
(4)

+ log
(

1 + e− E+μ
T

)]
, (5)

with N f = 2, Nc = 3 being the number of light quark flavors 
and colors, T the temperature and μ = μB/3 the quark chemi-
cal potential. The dynamically generated energy of a constituent 
quark with momentum p is E = √

p2 + g2σ 2. In the Hubble term 
∼ D/τ , we set D = 1, considering the case of a longitudinal ex-
pansion along the direction of the beam axis. The damping coeffi-
cient η describes various dissipative processes of the sigma field: 
First, mesonic interactions, i.e. scattering of a condensed sigma 
meson with a thermal sigma, σσ ↔ σσ , and two-pion decay, 
σ ↔ ππ [48]. Second, meson-quark interactions, σ ↔ qq̄ [40]. We 
include all of these within a phenomenological constant damp-
ing coefficient of η = 2.2/fm [49]. In principle, one could choose 
a temperature-dependent η as derived in [40]. Its value has been 
found to be a factor 2–3 larger than our constant value if the sys-
tem is far away from the phase boundary and approaching zero 
near the CP which can have significant impact for systems equili-
brating in the critical region. For a rapid expansion as we study it 
here, the impact of a temperature dependence is, however, negli-
gible [27]. The stochastic noise field ξ is assumed to be white and 
Gaussian, characterized by mean and variance,

〈ξ(t)〉 = 0 , (6)

〈ξ(t)ξ(t′)〉 = 2Tη

V
δ(t − t′) . (7)

Here, the volume V is given by an expanding cylindrical volume, 
V = π R2τ , with the radius of a gold nucleus R = 7.3 fm to re-
semble the increasing volume of the fireball created in a central 
Au + Au collision.

We assume the quark degrees of freedom to constitute an ideal 
fluid with energy–momentum tensor T μν

q = (e + p)uμuν − pgμν . 
Energy–momentum conservation now dictates the vanishing of the 
divergence of the total energy–momentum tensor,

∂μT μν = ∂μ

(
T μν

q + T μν
σ

) = 0 . (8)

A self-consistent derivation within the two-particle irreducible ac-
tion formalism as in [40] yields

∂μT μν
q =

[
δ�qq̄

δσ
+

(
D

τ
+ η

)
σ̇

]
∂νσ . (9)

Contracting Eq. (9) with the four-velocity uν gives the equation for 
the evolution of the energy density,

ė = −e + p +
[

δ�qq̄ +
(

D + η

)
σ̇

]
σ̇ . (10)
τ δσ τ
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The net-baryon density follows the equation

ṅ = − n

τ
. (11)

Finally, the coupled set of equations (3) and (10) is closed by the 
equation of state, p = −�qq̄ . The entropy density at each time τ is 
then given by

s = e + p − μn

T
, (12)

and is supposed to yield a conserved total entropy for an ideal hy-
drodynamic evolution. In this case, the equations would need to 
be modified such that e = T ∂ p

∂T − p + μn + U and p = −�qq̄ − U
together with the condition that the field σ is equal to its equi-
librium value at all times. This naturally leads to sτ = s0τ0. The 
evolution then simply follows the isentropic lines of the quark-
meson model as they have been calculated in [50], showing a 
characteristic bending of trajectories at the phase boundary.

The Langevin equation (3) describes the relaxation of the crit-
ical mode. Near equilibrium, neglecting stochastic fluctuations, we 
may write this as

σ̈ + ησ̇ + m2
σ (T )σ ≈ 0 . (13)

Here, mσ (T ) denotes the temperature-dependent screening mass 
of the sigma meson, defined as the second derivative of � with 
respect to σ at its global minimum. The solution of this equation 
is given by σ(τ ) ∼ eατ with

α = −η

2
±

√
η2

4
− m2

σ (T ) . (14)

For the underdamped or critically damped case with mσ (T ) ≥ η/2, 
this gives a relaxation time of 2/η ≈ 0.9 fm which is prolonged 
if mσ (T ) < η/2, which is the case around the transition and es-
pecially near the CP where mσ (T ) → 0 and critical slowing down 
sets in.

3. Entropy production from dissipation and fluctuations

Besides the full Langevin dynamics, it is instructive to study 
Eq. (3) without noise (ξ = 0) and without dissipation and noise 
(η = 0, ξ = 0), the latter case representing a propagation accord-
ing to the classical Euler–Lagrange equation. We choose an initial 
condition (T0, μ0) = (171, 19) MeV, resulting in an evolution pass-
ing through the crossover region of the quark-meson model over a 
proper time from τ = 1 to 10 fm. The initial entropy-to-baryon 
number ratio is S/N = 124.5 and is constant for ideal hydrody-
namics, characterized by the equilibrium condition σ = σeq, with

∂�

∂σ

∣∣∣∣
σ=σeq

= 0 . (15)

This equation also specifies the initial condition for σ . The dy-
namical treatment of the chiral order parameter, however, raises 
the expectation that relaxational effects and fluctuations produce 
entropy during the evolution through and beyond the transition. 
We show the evolution of 〈σ 〉, �σ =

√
〈(σ − σeq)2〉 and S/N as a 

function of τ in Fig. 1. Here, 〈σ 〉 and �σ are scaled by the vac-
uum expectation value fπ and 〈·〉 denotes the event-average over 
different noise configurations which is applied in the case of the 
full Langevin dynamics. In the upper plot, we can follow the relax-
ation of the order parameter to equilibrium during the crossover 
transition. While the scenario without dissipation and noise leads 
Fig. 1. Top: Event-averaged sigma field. Middle: Fluctuation of the sigma field from 
equilibrium �σ =

√
〈(σ − σeq)2〉. Bottom: Entropy per baryon as a function of 

proper time τ , comparing evolutions with a full Langevin dynamics, without dis-
sipation and noise and with dissipation but no noise.

to unphysical fluctuations around equilibrium, the damping term 
ensures the proper relaxational dynamics. The further addition of 
a noise term slightly increases the relaxation time, similar to what 
has been observed in [51] for the Langevin dynamics of the SU(2) 
deconfining transition. In the behavior of �σ , we see that the 
noise also prevents the fluctuations around the equilibrium value 
to vanish, ensuring that �σ remains finite also for later times, 
when fluctuations in the noise-free case with η > 0 have already 
vanished. The initial rapid increase in �σ results form the rapid 
decrease in temperature which the order parameter is not able to 
follow immediately. The subsequent decay of this fluctuation from 
τ = 2.5 to 5.5 fm evolves parallel to the rapid increase of σ toward 
its low-temperature equilibrium value. In the same time, a clear in-
crease in the entropy is seen for the two scenarios with η > 0, as 
a result of the energy transfer ∼ ησ̇ during the rapid decay of the 
chirally restored phase. Besides the impact of friction, the plot on 
the bottom reveals another source of entropy production, namely 
fluctuations in the order parameter. For the full Langevin dynam-
ics, these seem to produce a steady increase in entropy both before 
and after the transition process while the large fluctuations around 
the expectation value in the case without damping and noise leads 
to a stronger increase due to fluctuations during and after the tran-
sition.

For a 3-dimensional expansion scenario, setting D = 3 in Eq. (4)
would yield an effectively larger damping and therefore longer 
relaxation times and a larger amount of entropy produced. This 
effect would be most significant in the beginning of the expan-
sion, when τ is small. A more realistic description of the volume 
expansion in a full (3 + 1)-dimensional fluid dynamical simulation 
is planned and will be presented in a future publication.

4. Impact of the expansion rate

In this section, we are going to investigate the relation between 
the initial state and the amount of reheating at a crossover and 
first-order phase transition. We will see that this also has an ef-
fect on the evolution of the entropy. We choose three different 
initial conditions along an isentropic trajectory above the crossover 
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Fig. 2. Top: Event-averaged trajectories for a crossover transition, starting on the 
same isentropic line but with different distances to the phase boundary. Bottom: 
Event-averaged trajectories for a first-order phase transition. The dotted line delin-
eates the crossover and first-order phase transition, respectively.

region and the first-order phase transition line, each. The trajecto-
ries for these events are shown in two plots in Fig. 2. The first 
remarkable thing to observe is a reheating process after passing 
through the crossover, an effect that usually occurs after the decay 
of a supercooled state in a first-order phase transition. Although no 
supercooling happens for the dynamical crossover, a delay in the 
relaxation process during the rapid phase change will nevertheless 
lead to significant energy dissipation and consequently to an in-
crease in T . We see that the trajectory below the crossover line 
depends on the initial conditions, trajectories starting closer to the 
crossover line tend to overshoot the phase boundary further. The 
reason for this is that for those events, the expansion rate ∼ 1/τ
at the phase boundary is larger, i.e. while the relaxation time is 
roughly the same, the more rapid expansion leads to a lower T
and μ before the relaxation process to the chirally broken phase 
starts. At a first-order phase transition, the overshooting effect is 
the same and has also been found before in inhomogeneous me-
dia [35]. In contrast to the crossover, however, we can see a clearer 
difference in the evolution below the phase transition line. Starting 
closer to the phase boundary leads to a stronger reheating process 
which can here be ascribed to the formation and decay of a super-
cooled state. The longer this state survives, the larger amount of 
energy will be dissipated into the fluid causing a larger rise in the 
temperature. In the context of heavy-ion experiments, it is impor-
tant to understand this effect as it will create additional thermal 
background. Finally, we note that significantly higher values of μ
are reached by choosing an initial state farther away from the first-
order phase transition line.

Fig. 3 shows the evolution of S/S0. Here, we consider the rel-
ative increase in entropy by dividing through the initial entropy 
of the medium S0 ≡ S(τ = 1 fm). We see that, in general, the en-
tropy increases stronger at a first-order phase transition than at a 
crossover. Furthermore, the amount of increase depends on how 
close the initial condition is to the phase boundary, with a higher 
expansion rate resulting in a larger increase in S .
Fig. 3. Top: Event-averaged entropy increase for a crossover scenario, corresponding 
to the trajectories in Fig. 2 (top). Bottom: Event-averaged entropy increase for a 
first-order phase transition, corresponding to the trajectories in Fig. 2 (bottom).

Fig. 4. Event-averaged trajectories for several initial conditions, probing different re-
gions of the phase diagram. The dashed line corresponds to the phase boundary 
and the black dot indicates the position of the CP.

5. Entropy increase with and without latent heat

We are now prepared to estimate the entropy production for 
events with different initial densities, probing different regions of 
the phase diagram. To make the results comparable, we choose ini-
tial conditions all across the phase diagram in such a way that each 
trajectory is going to meet the phase boundary at a fixed proper 
time of τ = 2 fm. Although this does not necessarily reflect the ex-
perimental reality where the initial condition is solely determined 
by the beam energy and nucleon number, this will help us disen-
tangle effects of different transition types from the impact of the 
expansion rate discussed in the previous section. The trajectories 
are shown in Fig. 4, together with the corresponding evolution of 
S/S0 in Fig. 5. A clear trend is found: While for a crossover and CP 
transition the entropy increase is of the order of 10–20%, slowly 
becoming larger for transitions closer to the CP, the presence of a 
latent heat amplifies this effect, resulting in an increase of up to 
100% for the trajectory with the strongest first-order phase transi-
tion.

Experimentally, this effect can be expected to lead to an in-
crease of the pion-to-baryon-number ratio, we therefore propose 
future experiments to search for steps in the π/p multiplicity ra-
tio as function of the beam energy.
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Fig. 5. Relative entropy increase for the trajectories shown in Fig. 4. We see that 
with increasing initial μ, the entropy increase becomes more significant.

6. Conclusions

We have studied the dynamical evolution of the zero mode of 
the chiral order parameter σ during the longitudinal expansion of 
a hot and dense fluid, described by the coupling to Bjorken hy-
drodynamics. The results demonstrate that entropy is generated by 
damping processes during the transition and by stochastic fluctu-
ations during the whole evolution. Interestingly, a reheating effect 
of the medium is observed not only for a first-order phase transi-
tion but also for events with a crossover. In all cases, the amount of 
reheating and entropy production depends on the expansion rate 
at the moment when the medium reaches the phase boundary. 
Assuming a proper time interval of ∼ 1 fm between the thermal-
ization of the medium and the start of the transition process, we 
were able to estimate the relative increase of S/N ranging from 
25% for a crossover to up to 200% for a first-order phase transi-
tion.

As the present study is a very simple model for the produc-
tion of entropy, more realistic approaches should be pursued in the 
future. Possible extensions of this work should consider an inho-
mogeneous medium, i.e. a full (3 + 1)-dimensional hydrodynamic 
expansion and include the effect of spatial fluctuations or higher-
order modes of the chiral order parameter field.
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